Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537130

RESUMO

BACKGROUND AND AIMS: Tumor microenvironment (TME) heterogeneity leads to a discrepancy in survival prognosis and clinical treatment response for hepatocellular carcinoma (HCC) patients. The clinical applications of documented molecular subtypes are constrained by several issues. APPROACH AND RESULTS: We integrated three single-cell datasets to describe the TME landscape and identified six prognosis-related cell subclusters. Unsupervised clustering of subcluster-specific markers was performed to generate transcriptomic subtypes. The predictive value of these molecular subtypes for prognosis and treatment response was explored in multiple external HCC cohorts and the Xiangya HCC cohort. TME features were estimated using single-cell immune repertoire sequencing, mass cytometry and multiplex immunofluorescence. The prognosis-related score (PRS) was constructed based on machine learning algorithm. Comprehensive single-cell analysis described TME heterogeneity in HCC. The five transcriptomic subtypes possessed different clinical prognoses, stemness characteristics, immune landscapes and therapeutic responses. Class 1 exhibited an inflamed phenotype with better clinical outcomes, while Classes 2 and 4 were characterized by a lack of T cell infiltration. Classes 5 and 3 indicated an inhibitory tumor immune microenvironment. Analysis of multiple therapeutic cohorts suggested that Classes 5 and 3 were sensitive to ICB and targeted therapy, whereas Classes 1 and 2 were more responsive to transcatheter arterial chemoembolization treatment. Class 4 displayed resistant to all conventional HCC therapies. Three potential therapeutic agents and four targets were further identified for high-PRS HCC patients. CONCLUSION: Our study generated a clinically valid molecular classification to guide precision medicine in patients with HCC.

2.
Cancer Gene Ther ; 31(1): 148-157, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37985721

RESUMO

Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate that requires research and improved treatment strategies. Chemotherapy is still one of the main methods of HCC treatment, but it may lead to drug resistance and damage to normal organs. Capsaicin, a naturally occurring active ingredient in chili peppers, has demonstrated anticancer properties in a variety of malignant tumor cell lines. However, the anti-cancer mechanism of capsaicin needs to be further explored in HCC. In this study, we utilized Arvanil, a non-stimulating synthetic capsaicin analog, in place of capsaicin. We found that Arvanil induced high mitochondrial calcium flow, which contributed to a decrease in mitochondrial membrane permeability transition pore (mPTP) opening and oxidative phosphorylation levels, ultimately triggering cellular ferroptosis by live cells in real time with a high content screening (HCS) platform and confocal microscopy. It was further confirmed by vina molecular docking and point mutation experiments that Arvanil directly binds to two amino acid sites of mitochondrial calcium uptake protein 1 (MICU1), namely Ser47 and Phe128, to trigger this process, which in turn inhibits the growth of HCC cells. In addition, it was confirmed that Arvanil enhances cisplatin chemosensitivity by inducing HCC cellular ferroptosis in vivo. In conclusion, our study suggests that Arvanil induces ferroptosis in HCC cells and is a candidate drug for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Proteínas de Transporte de Cátions , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Capsaicina/química , Capsaicina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Cálcio/metabolismo , Cálcio/uso terapêutico , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Proteínas de Ligação ao Cálcio , Proteínas de Transporte de Cátions/uso terapêutico , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/uso terapêutico
3.
Cell Death Differ ; 30(7): 1679-1694, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37173390

RESUMO

Circular RNAs (circRNAs) play an important regulatory role in the pathogenesis and progression of nasopharyngeal carcinoma (NPC), which have not been thoroughly elucidated. In this study, we revealed for the first time that circRILPL1 was upregulated in NPC, weakened adhesion and decreased stiffness of NPC cells, and promoted NPC proliferation and metastasis in vitro and in vivo. Mechanistically, circRILPL1 inhibited the LATS1-YAP kinase cascade by binding to and activating ROCK1, resulting in decrease of YAP phosphorylation. Binding and cooperating with transport receptor IPO7, circRILPL1 promoted the translocation of YAP from the cytoplasm to the nucleus, where YAP enhanced the transcription of cytoskeleton remodeling genes CAPN2 and PXN. By which, circRILPL1 contributed to the pathogenesis of NPC. Our results demonstrated that circRILPL1 promoted the proliferation and metastasis of NPC through activating the Hippo-YAP signaling pathway by binding to both ROCK1 and IPO7. Highly expressed circRILPL1 in NPC may serve as an important biomarker for tumor diagnosis and may also be a potential therapeutic target.


Assuntos
Neoplasias Nasofaríngeas , RNA Circular , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , RNA Circular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Via de Sinalização Hippo , Neoplasias Nasofaríngeas/metabolismo , Regulação Neoplásica da Expressão Gênica , Quinases Associadas a rho/genética
4.
Front Oncol ; 13: 1112104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124502

RESUMO

Background: Pancreatic cancer is one of most aggressive malignancies with a dismal prognosis. Activation of PI3K/AKT signaling is instrumental in pancreatic cancer tumorigenesis. The aims of this study were to identify the molecular clustering, prognostic value, relationship with tumor immunity and targeting of PI3K/AKT-related genes (PARGs) in pancreatic cancer using bioinformatics. Methods: The GSEA website was searched for PARGs, and pancreatic cancer-related mRNA data and clinical profiles were obtained through TCGA downloads. Prognosis-related genes were identified by univariate Cox regression analysis, and samples were further clustered by unsupervised methods to identify significant differences in survival, clinical information and immune infiltration between categories. Next, a prognostic model was constructed using Lasso regression analysis. The model was well validated by univariate and multivariate Cox regression analyses, Kaplan-Meier survival analysis and ROC curves, and correlations between risk scores and patient pathological characteristics were identified. Finally, GSEA, drug prediction and immune checkpoint protein analyses were performed. Results: Pancreatic cancers were divided into Cluster 1 (C1) and Cluster 2 (C1) according to PARG mRNA expression. C1 exhibited longer overall survival (OS) and higher immune scores and CTLA4 expression, whereas C2 exhibited more abundant PD-L1. A 6-PARG-based prognostic model was constructed to divide pancreatic cancer patients into a high-risk score (HRS) group and a low-risk score (LRS) group, where the HRS group exhibited worse OS. The risk score was defined as an independent predictor of OS. The HRS group was significantly associated with pancreatic cancer metastasis, aggregation and immune score. Furthermore, the HRS group exhibited immunosuppression and was sensitive to radiotherapy and guitarbine chemotherapy. Multidrug sensitivity prediction analysis indicated that the HRS group may be sensitive to PI3K/AKT signaling inhibitors (PIK-93, GSK2126458, CAL-101 and rapamycin) and ATP concentration regulators (Thapsigargin). In addition, we confirmed the oncogenic effect of protein phosphatase 2 regulatory subunit B'' subunit alpha (PPP2R3A) in pancreatic cancer in vitro and in vivo. Conclusions: PARGs predict prognosis, tumor immune profile, radiotherapy and chemotherapy drug sensitivity and are potential predictive markers for pancreatic cancer treatment that can help clinicians make decisions and personalize treatment.

5.
Mol Cancer ; 21(1): 192, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199071

RESUMO

BACKGROUND: Circular RNAs (circRNAs) act as gene expression regulators and are involved in cancer progression. However, their functions have not been sufficiently investigated in nasopharyngeal carcinoma (NPC). METHODS: The expression profiles of circRNAs in NPC cells within different metastatic potential were reanalyzed. Quantitative reverse transcription PCR and in situ hybridization were used to detect the expression level of circPVT1 in NPC cells and tissue samples. The association of expression level of circPVT1 with clinical properties of NPC patients was evaluated. Then, the effects of circPVT1 expression on NPC metastasis were investigated by in vitro and in vivo functional experiments. RNA immunoprecipitation, pull-down assay and western blotting were performed to confirm the interaction between circPVT1 and ß-TrCP in NPC cells. Co-immunoprecipitation and western blotting were performed to confirm the interaction between ß-TrCP and c-Myc in NPC cells. RESULTS: We find that circPVT1, a circular RNA, is significantly upregulated in NPC cells and tissue specimens. In vitro and in vivo experiments showed that circPVT1 promotes the invasion and metastasis of NPC cells. Mechanistically, circPVT1 inhibits proteasomal degradation of c-Myc by binding to ß-TrCP, an E3 ubiquiting ligase. Stablization of c-Myc by circPVT1 alters the cytoskeleton remodeling and cell adhesion in NPC, which ultimately promotes the invasion and metastasis of NPC cells. Furthermore, c-Myc transcriptionally upregulates the expression of SRSF1, an RNA splicing factor, and recruits SRSF1 to enhance the biosynthesis of circPVT1 through coupling transcription with splicing, which forms a positive feedback for circPVT1 production. CONCLUSIONS: Our results revealed the important role of circPVT1 in the progression of NPC through the ß-TrCP/c-Myc/SRSF1 positive feedback loop, and circPVT1 may serve as a prognostic biomarker or therapeutic target in patients with NPC.


Assuntos
Carcinoma , MicroRNAs , Neoplasias Nasofaríngeas , Biomarcadores , Carcinoma/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Retroalimentação , Regulação Neoplásica da Expressão Gênica , Humanos , Ligases/genética , MicroRNAs/genética , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , RNA , Fatores de Processamento de RNA/genética , RNA Circular/genética , Fatores de Processamento de Serina-Arginina , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo
6.
Cell Death Dis ; 13(6): 544, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688814

RESUMO

Ferroptosis is a type of cell death that depends on iron and reactive oxygen species (ROS). The accumulation of iron and lipid peroxidation primarily initiates oxidative membrane damage during ferroptosis. The core molecular mechanism of ferroptosis includes the regulation of oxidation and the balance between damage and antioxidant defense. Tumor cells usually contain a large amount of H2O2, and ferrous/iron ions will react with excessive H2O2 in cells to produce hydroxyl radicals and induce ferroptosis in tumor cells. Here, we reviewed the latest studies on the regulation of ferroptosis in tumor cells and introduced the tumor-related signaling pathways of ferroptosis. We paid particular attention to the role of noncoding RNA, nanomaterials, the role of drugs, and targeted treatment using ferroptosis drugs for mediating the ferroptosis process in tumor cells. Finally, we discussed the currently unresolved problems and future research directions for ferroptosis in tumor cells and the prospects of this emerging field. Therefore, we have attempted to provide a reference for further understanding of the pathogenesis of ferroptosis and proposed new targets for cancer treatment.


Assuntos
Ferroptose , Neoplasias , Humanos , Peróxido de Hidrogênio , Ferro/metabolismo , Peroxidação de Lipídeos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Nat Commun ; 13(1): 866, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165282

RESUMO

Epstein-Barr virus (EBV) is reportedly the first identified human tumor virus, and is closely related to the occurrence and development of nasopharyngeal carcinoma (NPC), gastric carcinoma (GC), and several lymphomas. PD-L1 expression is elevated in EBV-positive NPC and GC tissues; however, the specific mechanisms underlying the EBV-dependent promotion of PD-L1 expression to induce immune escape warrant clarification. EBV encodes 44 mature miRNAs. In this study, we find that EBV-miR-BART11 and EBV-miR-BART17-3p upregulate the expression of PD-L1 in EBV-associated NPC and GC. Furthermore, EBV-miR-BART11 targets FOXP1, EBV-miR-BART17-3p targets PBRM1, and FOXP1 and PBRM1 bind to the enhancer region of PD-L1 to inhibit its expression. Therefore, EBV-miR-BART11 and EBV-miR-BART17-3p inhibit FOXP1 and PBRM1, respectively, and enhance the transcription of PD-L1 (CD274, http://www.ncbi.nlm.nih.gov/gene/29126 ), resulting in the promotion of tumor immune escape, which provides insights into potential targets for EBV-related tumor immunotherapy.


Assuntos
Herpesvirus Humano 4/genética , MicroRNAs/genética , Carcinoma Nasofaríngeo/imunologia , Neoplasias Nasofaríngeas/imunologia , Neoplasias Gástricas/imunologia , Evasão Tumoral/imunologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Herpesvirus Humano 4/imunologia , Humanos , Linfoma/imunologia , Linfoma/virologia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/virologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Neoplasias Gástricas/virologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Evasão Tumoral/genética , Microambiente Tumoral/imunologia
8.
Oncogene ; 41(2): 233-245, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725462

RESUMO

Nasopharyngeal carcinoma (NPC) demonstrates significant regional differences and a high incidence in Southeast Asia and Southern China. Bactericidal/permeability-increasing-fold- containing family B member 1 (BPIFB1) is a relatively specific and highly expressed protein in the nasopharyngeal epithelium. BPIFB1 expression is substantially downregulated in NPC and is significantly associated with poor prognosis in patients with NPC. However, the specific molecular mechanism by which BPIFB1 regulates NPC is not well understood. In this study, we found that BPIFB1 inhibits vasculogenic mimicry by regulating the metabolic reprogramming of NPC. BPIFB1 decreases GLUT1 transcription by downregulating the JNK/AP1 signaling pathway. Altered glycolysis reduces the acetylation level of histone and decreases the expression of vasculogenic mimicry-related genes, VEGFA, VE-cadherin, and MMP2, ultimately leading to the inhibition of vasculogenic mimicry. To our knowledge, this is the first report on the role and specific mechanism of BPIFB1 as a tumor suppressor gene involved in regulating glycolysis and vasculogenic mimicry in NPC. Overall, these results provide a new therapeutic target for NPC diagnosis and treatment.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Neoplasias Nasofaríngeas/genética , Acetilação , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Nasofaríngeas/patologia , Transfecção
9.
Pathogens ; 10(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34832605

RESUMO

Mycoplasma genitalium is a newly recognized pathogen associated with sexually transmitted diseases (STDs). MgPa, the adhesion protein of Mycoplasma genitalium, is the main adhesin and the key factor for M. genitalium interacting with host cells. Currently, the long-term survival mechanism of M. genitalium in the host is not clear. In this study, a T7 phage-displayed human urothelial cell (SV-HUC-1) cDNA library was constructed, and the interaction of MgPa was screened from this library using the recombinant MgPa (rMgPa) as a target molecule. We verified that 60S ribosomal protein L35 (RPL35) can interact with MgPa using far-Western blot and co-localization analysis. According to the results of tandem mass tag (TMT) labeling and proteome quantitative analysis, there were altogether 407 differentially expressed proteins between the pcDNA3.1(+)/MgPa-transfected cells and non-transfected cells, of which there were 6 downregulated proteins and 401 upregulated proteins. The results of qRT-PCR demonstrated that interaction between rMgPa and RPL35 could promote the expressions of EIF2, SRP68, SERBP1, RPL35A, EGF, and TGF-ß. 3-(4,5)-Dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide bromide (MTT) assays corroborated that the interaction between rMgPa and RPL35 could promote SV-HUC-1 cell proliferation. Therefore, our findings indicated that the interaction between rMgPa and RPL35 can enhance the expressions of transcription-initiation and translation-related proteins and thus promote cell proliferation. This study elucidates a new biological function of MgPa and can explain this new mechanism of M. genitalium in the host.

10.
EMBO Mol Med ; 13(12): e14072, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34755470

RESUMO

Adenine nucleotide translocase-1 (ANT1) is an ADP/ATP transporter protein located in the inner mitochondrial membrane. ANT1 is involved not only in the processes of ADP/ATP exchange but also in the composition of the mitochondrial membrane permeability transition pore (mPTP); and the function of ANT1 is closely related to its own conformational changes. Notably, various viral proteins can interact directly with ANT1 to influence mitochondrial membrane potential by regulating the opening of mPTP, thereby affecting tumor cell fate. The Epstein-Barr virus (EBV) encodes the key tumorigenic protein, latent membrane protein 1 (LMP1), which plays a pivotal role in promoting therapeutic resistance in related tumors. In our study, we identified a novel mechanism for EBV-LMP1-induced alteration of ANT1 conformation in cisplatin resistance in nasopharyngeal carcinoma. Here, we found that EBV-LMP1 localizes to the inner mitochondrial membrane and inhibits the opening of mPTP by binding to ANT1, thereby favoring tumor cell survival and drug resistance. The ANT1 conformational inhibitor carboxyatractyloside (CATR) in combination with cisplatin improved the chemosensitivity of EBV-LMP1-positive cells. This finding confirms that ANT1 is a novel therapeutic target for overcoming cisplatin resistance in the future.


Assuntos
Translocador 1 do Nucleotídeo Adenina/química , Cisplatino , Infecções por Vírus Epstein-Barr , Cisplatino/metabolismo , Cisplatino/farmacologia , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4/metabolismo , Humanos , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Membranas Mitocondriais/metabolismo
11.
Pathog Dis ; 79(7)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755841

RESUMO

Mycoplasma genitalium, the smallest prokaryotic microorganism capable of independent replication, is increasingly recognized as a sexually transmitted pathogen. M. genitalium protein of adhesion (MgPa) plays a pivotal role in the process of M. genitalium adhesion to host cells. We previously identified cyclophilin A as a cellular receptor of MgPa using the virus overlay protein binding assay (VOPBA) together with liquid chromatography-mass spectrometry (LC-MS). In the current study, we have evaluated H2B as an alternative cellular receptor for MgPa since H2B was assigned the second higher score as a potential binding partner of MgPa in the VOPBA and LC-MS screen. It was found that recombinant MgPa specifically bind to H2B both in the SV-HUC-1 cell membrane and in form of a recombinant protein. H2B was detected throughout the SV-HUC-1 cells, including the cytoplasmic membrane, cytosol and nucleus. Importantly, H2B partially inhibited the adhesion of M. genitalium to SV-HUC-1 cells. Finally, H2B was both co-precipitated with recombinant MgPa and co-localized with M. genitalium and recombinant MgPa in SV-HUC-1 cells. The above observations suggest that H2B may act as a potential cellular receptor of MgPa for mediating M. genitalium adhesion to host cells.


Assuntos
Adesinas Bacterianas/metabolismo , Histonas/metabolismo , Infecções por Mycoplasma/microbiologia , Mycoplasma genitalium/metabolismo , Linhagem Celular , Humanos , Mycoplasma genitalium/genética , Mycoplasma genitalium/patogenicidade , Ligação Proteica , Proteínas Recombinantes/metabolismo
12.
Mol Cancer ; 20(1): 112, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465340

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are widely expressed in human cells and are closely associated with cancer development. However, they have rarely been investigated in the context of nasopharyngeal carcinoma (NPC). METHODS: We screened a new circRNA, circRNF13, in NPC cells using next-generation sequencing of mRNA. Reverse transcription polymerase chain reaction and RNA fluorescence in situ hybridization were used to detect circRNF13 expression in 12 non-tumor nasopharyngeal epithelial (NPE) tissues and 36 NPC samples. Cell proliferation was detected using MTT and flow cytometry assays, and colony formation capability was detected using colony formation assays. Cell migration and invasion were analyzed using wound-healing and Transwell assays, respectively. Cell glycolysis was analyzed using the Seahorse glycolytic stress test. Glucose transporter type 1 (GLUT1) ubiquitination and SUMOylation modifications were analyzed using co-immunoprecipitation and western blotting. CircRNF13 and Small Ubiquitin-like Modifier 2 (SUMO2) interactions were analyzed using RNA pull-down and luciferase reporter assays. Finally, to test whether circRNF13 inhibited NPC proliferation and metastasis in vivo, we used a xenograft nude mouse model generated by means of subcutaneous or tail vein injection. RESULTS: We found that circRNF13 was stably expressed at low levels in NPC clinical tissues and NPC cells. In vitro and in vivo experiments showed that circRNF13 inhibited NPC proliferation and metastasis. Moreover, circRNF13 activated the SUMO2 protein by binding to the 3'- Untranslated Region (3'-UTR) of the SUMO2 gene and prolonging the half-life of SUMO2 mRNA. Upregulation of SUMO2 promotes GLUT1 degradation through SUMOylation and ubiquitination of GLUT1, which regulates the AMPK-mTOR pathway by inhibiting glycolysis, ultimately resulting in the proliferation and metastasis of NPC. CONCLUSIONS: Our results revealed that a novel circRNF13 plays an important role in the development of NPC through the circRNF13-SUMO2-GLUT1 axis. This study implies that circRNF13 mediates glycolysis in NPC by binding to SUMO2 and provides an important theoretical basis for further elucidating the pathogenesis of NPC and targeted therapy.


Assuntos
Carcinoma Nasofaríngeo/genética , RNA Circular/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Humanos , Hibridização in Situ Fluorescente , Camundongos , Modelos Biológicos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Invasividade Neoplásica , Metástase Neoplásica , Interferência de RNA , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Front Cell Dev Biol ; 9: 616784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195184

RESUMO

Breast cancer is the most common malignant tumor in women, and its incidence is increasing each year. To effectively treat breast cancer, it is important to identify genes involved in its occurrence and development and to exploit them as potential drug therapy targets. Here, we found that potassium channel subfamily K member 6 (KCNK6) is significantly overexpressed in breast cancer, however, its function in tumors has not been reported. We further verified that KCNK6 expression is upregulated in breast cancer biopsies. Moreover, overexpressed KCNK6 was found to enhance the proliferation, invasion, and migration ability of breast cancer cells. These effects may occur by weakening cell adhesion and reducing cell hardness, thus affecting the malignant phenotype of breast cancer cells. Our study confirmed, for the first time, that increased KCNK6 expression in breast cancer cells may promote their proliferation, invasion, and migration. Moreover, considering that ion channels serve as therapeutic targets for many small molecular drugs in clinical treatment, targeting KCNK6 may represent a novel strategy for breast cancer therapies. Hence, the results of this study provide a theoretical basis for KCNK6 to become a potential molecular target for breast cancer treatment in the future.

14.
Front Oncol ; 11: 616202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996542

RESUMO

Circular RNAs (circRNAs) are a novel type of non-coding RNAs. Because of their characteristics of a closed loop structure, disease- and tissue-specificity, and high conservation and stability, circRNAs have the potential to be biomarkers for disease diagnosis. Head and neck cancers are one of the most common malignant tumors with high incidence rates globally. Affected patients are often diagnosed at the advanced stage with poor prognosis, owing to the concealment of anatomic sites. The characteristics, functions, and specific mechanisms of circRNAs in head and neck cancers are increasingly being discovered, and they have important clinical significance for the early diagnosis, treatment, and prognosis evaluation of patients with cancer. In this study, the generation, characteristics, and functions of circRNAs, along with their regulatory mechanisms in head and neck cancers have been summarized. We report that circRNAs interact with molecules such as transcription and growth factors to influence specific pathways involved in tumorigenesis. We conclude that circRNAs have an important role to play in the proliferation, invasion, metastasis, energy and substance metabolism, and treatment resistance in cancers.

15.
Cell Death Dis ; 11(11): 945, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144579

RESUMO

There is increasing evidence that long non-coding RNAs (lncRNAs) play important roles in human tumorigenesis. By using publicly available expression profiling data from lung adenocarcinoma and integrating bioinformatics analysis, we screened a lncRNA, LINC00472. LINC00472 expression in lung adenocarcinoma tissues was significantly lower and tightly associated with patient prognosis and TNM clinical stages in lung adenocarcinoma. LINC00472 also inhibited lung adenocarcinoma cell migration and invasion and increased cell stiffness and adhesion. RNA pull down and RIP assays identified that LINC00472 interacted with the transcription factor Y-box binding protein 1 (YBX1), which partially reversed the inhibition of cell migration and invasion and increased LINC00472-induced cell stiffness and adhesion. LINC00472 also regulated the density and integrity of F-actin in A549 and PC-9 cells possibly via YBX1. LINC00472 inhibited the cell epithelial-mesenchymal transition (EMT) processes via the modulation of YBX1. These results indicated that LINC00472 inhibited the cell EMT process by binding to YBX1, and affected the mechanical properties of the cell, ultimately inhibited its ability to invade and metastasize. Collectively, the present study provides the first evidence that LINC00472 changes the mechanical properties and inhibits the invasion and metastasis of lung adenocarcinoma cells.


Assuntos
Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Invasividade Neoplásica , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteína 1 de Ligação a Y-Box/genética
16.
J Exp Clin Cancer Res ; 39(1): 204, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32993787

RESUMO

Tumor angiogenesis is necessary for the continued survival and development of tumor cells, and plays an important role in their growth, invasion, and metastasis. The tumor microenvironment-composed of tumor cells, surrounding cells, and secreted cytokines-provides a conducive environment for the growth and survival of tumors. Different components of the tumor microenvironment can regulate tumor development. In this review, we have discussed the regulatory role of the microenvironment in tumor angiogenesis. High expression of angiogenic factors and inflammatory cytokines in the tumor microenvironment, as well as hypoxia, are presumed to be the reasons for poor therapeutic efficacy of current anti-angiogenic drugs. A combination of anti-angiogenic drugs and antitumor inflammatory drugs or hypoxia inhibitors might improve the therapeutic outcome.


Assuntos
Proteínas de Neoplasias/genética , Neoplasias/genética , Neovascularização Patológica/genética , Microambiente Tumoral/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias/patologia , Neovascularização Patológica/patologia
17.
Mol Cancer ; 19(1): 22, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019587

RESUMO

Non-coding RNAs do not encode proteins and regulate various oncological processes. They are also important potential cancer diagnostic and prognostic biomarkers. Bioinformatics and translation omics have begun to elucidate the roles and modes of action of the functional peptides encoded by ncRNA. Here, recent advances in long non-coding RNA (lncRNA) and circular RNA (circRNA)-encoded small peptides are compiled and synthesized. We introduce both the computational and analytical methods used to forecast prospective ncRNAs encoding oncologically functional oligopeptides. We also present numerous specific lncRNA and circRNA-encoded proteins and their cancer-promoting or cancer-inhibiting molecular mechanisms. This information may expedite the discovery, development, and optimization of novel and efficacious cancer diagnostic, therapeutic, and prognostic protein-based tools derived from non-coding RNAs. The role of ncRNA-encoding functional peptides has promising application perspectives and potential challenges in cancer research. The aim of this review is to provide a theoretical basis and relevant references, which may promote the discovery of more functional peptides encoded by ncRNAs, and further develop novel anticancer therapeutic targets, as well as diagnostic and prognostic cancer markers.


Assuntos
Terapia de Alvo Molecular , Neoplasias/terapia , Fragmentos de Peptídeos/uso terapêutico , RNA Circular/genética , RNA Longo não Codificante/genética , Animais , Humanos , Neoplasias/genética , Neoplasias/metabolismo
18.
Sci Rep ; 9(1): 3498, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837486

RESUMO

Plasmon-based devices are powerful for use in highly sensitive evanescent-field detection and analysis, but they exhibit the problem of limited frequency tunability for fixed structures. This feature causes problems in the multi-frequency investigations required for materials characterization, bio-related research, etc. Here, we propose and fabricate a spiral-shaped plasmonic structure that enables a continuous frequency-tuneable evanescent-field concentration in the terahertz (THz) region with simple operation. The device also increases the electric field intensity at the subwavelength aperture, thus significantly amplifying the transmission. Highly tuneable transmission bands are observed by simply rotating the spiral plasmonic structure, which are in good agreement with the behaviour expected from electromagnetic simulation. Medical examinations are performed by measuring the interactions between the frequency-tuneable plasmons and bio-samples, which enables observing distinct tissue-dependent transmission spectra and images. The developed device simultaneously offers the advantages of both plasmonic devices and frequency-tuneable devices, which can increase the availability and versatility of evanescent-field THz sensing and analysis. The mechanism presented will shed light on THz plasmonics and motivate the implementation of a variety of applications based on plasmon-mediated THz technologies.

19.
Mol Cancer ; 18(1): 10, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646912

RESUMO

Tumor immune escape is an important strategy of tumor survival. There are many mechanisms of tumor immune escape, including immunosuppression, which has become a research hotspot in recent years. The programmed death ligand-1/programmed death-1 (PD-L1/PD-1) signaling pathway is an important component of tumor immunosuppression, which can inhibit the activation of T lymphocytes and enhance the immune tolerance of tumor cells, thereby achieving tumor immune escape. Therefore, targeting the PD-L1/PD-1 pathway is an attractive strategy for cancer treatment; however, the therapeutic effectiveness of PD-L1/PD-1 remains poor. This situation requires gaining a deeper understanding of the complex and varied molecular mechanisms and factors driving the expression and activation of the PD-L1/PD-1 signaling pathway. In this review, we summarize the regulation mechanisms of the PD-L1/PD-1 signaling pathway in the tumor microenvironment and their roles in mediating tumor escape. Overall, the evidence accumulated to date suggests that induction of PD-L1 by inflammatory factors in the tumor microenvironment may be one of the most important factors affecting the therapeutic efficiency of PD-L1/PD-1 blocking.


Assuntos
Antígeno B7-H1/imunologia , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Transdução de Sinais/imunologia , Linfócitos T/imunologia
20.
J Nanobiotechnology ; 16(1): 102, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538002

RESUMO

Atomic force microscopy (AFM) allows for nanometer-scale investigation of cells and molecules. Recent advances have enabled its application in cancer research and diagnosis. The physicochemical properties of live cells undergo changes when their physiological conditions are altered. These physicochemical properties can therefore reflect complex physiological processes occurring in cells. When cells are in the process of carcinogenesis and stimulated by external stimuli, their morphology, elasticity, and adhesion properties may change. AFM can perform surface imaging and ultrastructural observation of live cells with atomic resolution under near-physiological conditions, collecting force spectroscopy information which allows for the study of the mechanical properties of cells. For this reason, AFM has potential to be used as a tool for high resolution research into the ultrastructure and mechanical properties of tumor cells. This review describes the working principle, working mode, and technical points of atomic force microscopy, and reviews the applications and prospects of atomic force microscopy in cancer research.


Assuntos
Microscopia de Força Atômica , Neoplasias/diagnóstico por imagem , Animais , Humanos , Neoplasias/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...