Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(41): e2300256, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37330644

RESUMO

The high-throughput scalable production of low-cost and high-performance electrode materials that work well under high power densities required in industrial application is full of challenges for the large-scale implementation of electrochemical technologies. Here, motivated by theoretical calculation that Mo-S-C heterojunction and sulfur vacancies can reduce the energy band gap, decrease the migration energy barrier, and improve the mechanical stability of MoS2 , the scalable preparation of inexpensive MoS2-x @CN is contrived by employing natural molybdenite as precursor, which is characteristic of high efficiency in synthesis process and energy conservation and the calculated costs are four orders of magnitude lower than MoS2 /C in previous work. More importantly, MoS2- x @CN electrode is endowed with impressive rate capability even at 5 A g-1 , and ultrastable cycling stability during almost 5000 cycles, which far outperform chemosynthesis MoS2 materials. Obtaining the full SIC cell assembled by MoS2- x @CN anode and carbon cathode, the energy/power output is high up to 265.3 W h kg-1 at 250 W kg-1 . These advantages indicate the huge potentials of the designed MoS2- x @CN and of mineral-based cost-effective and abundant resources as anode materials in high-performance AICs.

2.
Nanomicro Lett ; 14(1): 53, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35092494

RESUMO

HIGHLIGHTS: Interfacial bonding strategy has been successfully applied to address the high overpotential issue of sacrificial additives, which reduced the decompositon potential of Na2C2O4 from 4.50 to 3.95 V. Ultra-low-dose technique assisted commercial sodium ion capacitor (AC//HC) could deliver a remarkable energy density of 118.2 Wh kg-1 as well as excellent cycle stability. In-depth decomposition mechanism of sacrificial compound and the relative influence after pre-metallation were revealed by advanced in situ and ex situ characterization approaches. Sacrificial pre-metallation strategy could compensate for the irreversible consumption of metal ions and reduce the potential of anode, thereby elevating the cycle performance as well as open-circuit voltage for full metal ion capacitors (MICs). However, suffered from massive-dosage abuse, exorbitant decomposition potential, and side effects of decomposition residue, the wide application of sacrificial approach was restricted. Herein, assisted with density functional theory calculations, strongly coupled interface (M-O-C, M = Li/Na/K) and electron donating group have been put forward to regulate the band gap and highest occupied molecular orbital level of metal oxalate (M2C2O4), reducing polarization phenomenon and Gibbs free energy required for decomposition, which eventually decrease the practical decomposition potential from 4.50 to 3.95 V. Remarkably, full sodium ion capacitors constituted of commercial materials (activated carbon//hard carbon) could deliver a prominent energy density of 118.2 Wh kg-1 as well as excellent cycle stability under an ultra-low dosage pre-sodiation reagent of 15-30 wt% (far less than currently 100 wt%). Noteworthily, decomposition mechanism of sacrificial compound and the relative influence on the system of MICs after pre-metallation were initially revealed by in situ differential electrochemical mass spectrometry, offering in-depth insights for comprehending the function of cathode additives. In addition, this breakthrough has been successfully utilized in high performance lithium/potassium ion capacitors with Li2C2O4/K2C2O4 as pre-metallation reagent, which will convincingly promote the commercialization of MICs.

3.
J Phys Chem Lett ; 12(38): 9321-9327, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34544240

RESUMO

The prospects of sodium (Na) metal batteries have been fatally plagued by interfacial Na dendrites, mainly affected by preferred nucleation on the metal anode and the steep gradient of Na ions in the electrolyte, leading to limited Coulombic efficiency and short lifespans. Herein, an electrochemically inert potassium-based Na-K alloy demonstrates a liquid alloying diffusion mechanism that enables dendrite-free Na anodes. The extremely small Na fluctuation and flexible Na-K bonds in the liquid alloy phase bring isotropic nucleation of Na upon electroplating/stripping, which is directly observed by in situ optical imaging. Spontaneously, serving as (de)sodiation buffer with faster electron/mass transportation, the liquid inertia also provides attenuated concentration distribution of Na. Significantly, a record capacity retention of approximately 100% is rendered when coupled with Na3V2(PO4)3 cathodes (ca. 2 mg cm-2) over 500 cycles at 10C, advancing the possibility of using liquid alloy for stable metal anodes beyond Na storage systems.

4.
Chemistry ; 27(65): 16082-16092, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34374996

RESUMO

Nowadays sodium-based energy storage systems (Na-based ESSs) have been widely researched as it possesses the possibility to replace traditional energy storage media to become next generation energy storage system. However, due to the irreversible loss of sodium ions in the first cycle, development of Na-based ESSs is limited. Presodiation, as a strategy of adding excess sodium ions to the system in advance, accomplishes the enhancement of electrochemical performance. In this minireview, different presodiation strategies applied in sodium-based energy storage systems will be summarized in detail, their functions and corresponding mechanisms will be discussed as well. Furthermore, the current novel application of presodiation method in other aspects of Na-based ESSs will be mentioned additionally. At last, in the view of present research status of presodiation, issues that can be mitigated are put forward and guidelines are given on how to deliberate in-depth presodiation technology in the future, dedicating to promote the further development of Na-based ESSs.

5.
Small ; 17(35): e2101058, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34242471

RESUMO

The sodium-ion battery (SIB) has attracted ever growing attention as a promising alternative of the lithium-ion battery (LIB). Constructing appropriate anode materials is critical for speeding up the application of SIB. This review aims at guiding anode design from the material's perspective, and specifically focusing on solid solution metal chalcogenide anode. The sodium ion storage mechanisms of a solid solution metal chalcogenide anode is overviewed on basis of the elements it is composed of, and discusses how the solid solution character alters the electrochemical performances through diffusion and surface-controlled processes. In addition, by classifying solid solution metal chalcogenide as cation and anion, their recent applications are updated, and understanding the roles of guest elements in improving the electrochemical behaviors of a solid solution metal chalcogenide is carried out. After that, discussion of possible strategies to further optimize these anode materials in the future, flowing from crystal structure design to morphology control and finally to the intimacy improvement between conductive matrix and solid solution metal chalcogenide are also provided.

6.
Angew Chem Int Ed Engl ; 60(31): 17070-17079, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-33847038

RESUMO

The use of a sacrificial cathode additive as a pre-metallation method could ensure adequate metal sources for advanced energy storage devices. However, this pre-metallation technique suffers from the precise regulation of decomposition potential of additive. Herein, a molecularly compensated pre-metallation (Li/Na/K) strategy has been achieved through Kolbe electrolysis, in which the electrochemical oxidation potential of a metal carboxylate is manipulated by the bonding energy of the oxygen-metal (O-M) moiety. The electron-donating effect of the substituent and the low charge density of the cation can dramatically weaken the O-M bond strength, further bringing out the reduced potential. Thus, sodium acetate exhibits a superior pre-sodiation feature for sodium-ion battery accompanied with a large irreversible specific capacity of 301.8 mAh g-1 , remarkably delivering 70.6 % enhanced capacity retention in comparison to the additive-free system after 100 cycles. This methodology has been extended to construct a high-performance lithium-ion battery and a lithium/sodium/potassium-ion capacitor.

7.
Chem Commun (Camb) ; 57(20): 2571-2572, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33644790

RESUMO

Correction for 'Highly stable zinc metal anode enabled by oxygen functional groups for advanced Zn-ion supercapacitors' by Kangyu Zou et al., Chem. Commun., 2021, 57, 528-531, DOI: 10.1039/D0CC07526D.

8.
Sci Bull (Beijing) ; 66(18): 1858-1868, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654395

RESUMO

The rate-determining process for sodium storage in TiO2 is greatly depending on charge transfer happening in the electrode materials owing to its inferior diffusion coefficient and electronic conductivity. Apart from reducing the diffusion distance of ion/electron, the increasement of ionic/electronic mobility in the crystal lattice is also very important for charge transport. Here, an oxygen vacancy (OV) engineering assisted in high-content anion (S/Se/P) doping strategy to enhance charge transfer kinetics for ultrafast sodium-storage performance is proposed. Theoretical calculations indicate that OV-engineering evokes spontaneous S doping into the TiO2 phase and achieves high dopant concentration to bring about impurity state electron donor and electronic delocalization over S occupied sites, which can largely reduce the migration barrier of Na+. To realize the speculation, high-content anion doped anatase TiO2/C composites (9.82 at% for S in A-TiO2-x-S/C) are elaborately designed. The optimized A-TiO2-x-S/C anode exhibits extraordinarily high-rate capability with 209.6 mAh g-1 at 5000 mA g-1. The assembled sodium ion capacitors deliver an ultrahigh energy density of 150.1 Wh kg-1 at a power density of 150 W kg-1 when applied as anode materials. This work provides a new strategy to realize high content anion doping concentration, and enhances the charge transfer kinetics for TiO2, which delivers an efficient approach for the design of electrode materials with fast kinetic.

9.
Chem Commun (Camb) ; 57(4): 528-531, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33332510

RESUMO

Konjac glucomannan (KGM) featuring abundant oxygen functional groups has been elaborately designed to enhance Zn reversibility. Importantly, -OH and C[double bond, length as m-dash]O groups as active sites could redistribute the Zn2+ concentration field and modulate the plating/stripping rate, further enabling uniform Zn deposition without dendrite growth. The Zn@KGM anode enables an advanced Zn-ion supercapacitor to deliver an impressive rate performance and cycling stability (up to 5000 cycles accompanied by a coulombic efficiency of 99.8%).

10.
Front Chem ; 8: 43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117871

RESUMO

Tuning hierarchical pore structure of carbon materials is an effective way to achieve high energy density under high power density of carbon-based supercapacitors. However, at present, most of methods for regulating pores of carbon materials are too complicated to be achieved. In this work, a durian shell derived porous carbon (DSPC) with abundant porous is prepared through chemical activation as a defect strategy. Hierarchical porous structure can largely enhance the transfer rate of electron/ion. Furthermore, DSPC with multiple porous structure exhibits excellent properties when utilized as electrode materials for electric double layer capacitors (EDLCs), delivering a specific capacitance of 321 F g-1 at 0.5 A g-1 in aqueous electrolyte. Remarkably, a high energy density of 27.7 Wh kg-1 is obtained at 675 W kg-1 in an organic two-electrode device. And large capacity can be remained even at high charge/discharge rate. Significantly, hierarchical porous structure allows efficient ion diffusion and charge transfer, resulting in a prominent cycling stability. This work is looking forward to providing a promising strategy to prepare hierarchical porous carbon-based materials for supercapacitors with ultrafast electron/ion transport.

11.
ACS Appl Mater Interfaces ; 9(38): 32829-32839, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28884573

RESUMO

The cornlike ordered mesoporous silicon (OM-Si) particles modified by the nitrogen-doped carbon layer (OM-Si@NC) are successfully fabricated and used as the anode of lithium-ion battery (LIBs). The influences of the N-doped carbon layer on the structure and electrochemical properties of the OM-Si@NC composite are detailedly investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectrum, X-ray photoelectron spectroscopy (XPS), and charge/discharge tests. The results reveal that the amorphous N-doped carbon layer can offer the abundant conductive pathways for fast lithium ion transportation and electron transfer, which not only leads to a high specific capacity under high ampere density but also serves as a structural barrier maintaining the whole integrity and settling the mechanical breaking due to the huge volume changes of Si host. Therefore, the as-synthesized OM-Si@NC composite exhibits a high original discharge capacity of 2548 mA h g-1 under 0.2 A g-1 as well as a large reversible capacity of 1336 mA h g-1 under 1 A g-1 after 200 circles. The OM-Si@NC composite prepared by a relatively simple and feasible synthesis method shows excellent electrochemical performances and turns out to be promising for the application of high power LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...