Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Med Virol ; 96(4): e29579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572923

RESUMO

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) primarily targets the respiratory system. Physiologically relevant human lung models are indispensable to investigate virus-induced host response and disease pathogenesis. In this study, we generated human induced pluripotent stem cell (iPSC)-derived alveolar organoids (AOs) using an established protocol that recapitulates the sequential steps of in vivo lung development. AOs express alveolar epithelial type II cell protein markers including pro-surfactant protein C and ATP binding cassette subfamily A member 3. Compared to primary human alveolar type II cells, AOs expressed higher mRNA levels of SARS-CoV-2 entry factors, angiotensin-converting enzyme 2 (ACE2), asialoglycoprotein receptor 1 (ASGR1) and basigin (CD147). Considering the localization of ACE2 on the apical side in AOs, we used three AO models, apical-in, sheared and apical-out for SARS-CoV-2 infection. All three models of AOs were robustly infected with the SARS-CoV-2 irrespective of ACE2 accessibility. Antibody blocking experiment revealed that ASGR1 was the main receptor for SARS-CoV2 entry from the basolateral in apical-in AOs. AOs supported the replication of SARS-CoV-2 variants WA1, Alpha, Beta, Delta, and Zeta and Omicron to a variable degree with WA1 being the highest and Omicron being the least. Transcriptomic profiling of infected AOs revealed the induction of inflammatory and interferon-related pathways with NF-κB signaling being the predominant host response. In summary, iPSC-derived AOs can serve as excellent human lung models to investigate infection of SARS-CoV-2 variants and host responses from both apical and basolateral sides.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , RNA Viral , Pulmão , Organoides , Receptor de Asialoglicoproteína
2.
Science ; 383(6690): 1434-1440, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547259

RESUMO

The emergence of SARS-CoV-2 variants and drug-resistant mutants calls for additional oral antivirals. The SARS-CoV-2 papain-like protease (PLpro) is a promising but challenging drug target. We designed and synthesized 85 noncovalent PLpro inhibitors that bind to a recently discovered ubiquitin binding site and the known BL2 groove pocket near the S4 subsite. Leads inhibited PLpro with the inhibitory constant Ki values from 13.2 to 88.2 nanomolar. The co-crystal structures of PLpro with eight leads revealed their interaction modes. The in vivo lead Jun12682 inhibited SARS-CoV-2 and its variants, including nirmatrelvir-resistant strains with EC50 from 0.44 to 2.02 micromolar. Oral treatment with Jun12682 improved survival and reduced lung viral loads and lesions in a SARS-CoV-2 infection mouse model, suggesting that PLpro inhibitors are promising oral SARS-CoV-2 antiviral candidates.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Inibidores de Protease de Coronavírus , Desenho de Fármacos , SARS-CoV-2 , Animais , Camundongos , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/química , Modelos Animais de Doenças , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Inibidores de Protease de Coronavírus/administração & dosagem , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Administração Oral , Cristalografia por Raios X , Relação Estrutura-Atividade , Carga Viral/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C
3.
Eur J Med Chem ; 264: 116011, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065031

RESUMO

The COVID-19 pandemic is caused by SARS-CoV-2, an RNA virus with high transmissibility and mutation rate. Given the paucity of orally bioavailable antiviral drugs to combat SARS-CoV-2 infection, there is a critical need for additional antivirals with alternative mechanisms of action. Papain-like protease (PLpro) is one of the two SARS-CoV-2 encoded viral cysteine proteases essential for viral replication. PLpro cleaves at three sites of the viral polyproteins. In addition, PLpro antagonizes the host immune response upon viral infection by cleaving ISG15 and ubiquitin from host proteins. Therefore, PLpro is a validated antiviral drug target. In this study, we report the X-ray crystal structures of papain-like protease (PLpro) with two potent inhibitors, Jun9722 and Jun9843. Subsequently, we designed and synthesized several series of analogs to explore the structure-activity relationship, which led to the discovery of PLpro inhibitors with potent enzymatic inhibitory activity and antiviral activity against SARS-CoV-2. Together, the lead compounds are promising drug candidates for further development.


Assuntos
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , SARS-CoV-2/metabolismo , Pandemias , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química
4.
bioRxiv ; 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38076941

RESUMO

The emergence of SARS-CoV-2 variants and drug-resistant mutants calls for additional oral antivirals. The SARS-CoV-2 papain-like protease (PLpro) is a promising but challenging drug target. In this study, we designed and synthesized 85 noncovalent PLpro inhibitors that bind to the newly discovered Val70Ub site and the known BL2 groove pocket. Potent compounds inhibited PLpro with inhibitory constant Ki values from 13.2 to 88.2 nM. The co-crystal structures of PLpro with eight leads revealed their interaction modes. The in vivo lead Jun12682 inhibited SARS-CoV-2 and its variants, including nirmatrelvir-resistant strains with EC50 from 0.44 to 2.02 µM. Oral treatment with Jun12682 significantly improved survival and reduced lung viral loads and lesions in a SARS-CoV-2 infection mouse model, suggesting PLpro inhibitors are promising oral SARS-CoV-2 antiviral candidates.

5.
ACS Cent Sci ; 9(8): 1658-1669, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37637734

RESUMO

The SARS-CoV-2 main protease (Mpro) is the drug target of Pfizer's oral drug nirmatrelvir. The emergence of SARS-CoV-2 variants with mutations in Mpro raised the alarm of potential drug resistance. To identify potential clinically relevant drug-resistant mutants, we systematically characterized 102 naturally occurring Mpro mutants located at 12 residues at the nirmatrelvir-binding site, among which 22 mutations in 5 residues, including S144M/F/A/G/Y, M165T, E166 V/G/A, H172Q/F, and Q192T/S/L/A/I/P/H/V/W/C/F, showed comparable enzymatic activity to the wild-type (kcat/Km < 10-fold change) while being resistant to nirmatrelvir (Ki > 10-fold increase). X-ray crystal structures were determined for six representative mutants with and/or without GC-376/nirmatrelvir. Using recombinant SARS-CoV-2 viruses generated from reverse genetics, we confirmed the drug resistance in the antiviral assay and showed that Mpro mutants with reduced enzymatic activity had attenuated viral replication. Overall, our study identified several drug-resistant hotspots in Mpro that warrant close monitoring for possible clinical evidence of nirmatrelvir resistance, some of which have already emerged in independent viral passage assays conducted by others.

6.
bioRxiv ; 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36119652

RESUMO

The SARS-CoV-2 main protease (M pro ) is the drug target of Pfizer’s oral drug Paxlovid. The emergence of SARS-CoV-2 variants with mutations in M pro raised the alarm of potential drug resistance. In this study, we identified 100 naturally occurring M pro mutations located at the nirmatrelvir binding site, among which 20 mutants, including S144M/F/A/G/Y, M165T, E166G, H172Q/F, and Q192T/S/L/A/I/P/H/V/W/C/F, showed comparable enzymatic activity to the wild-type (k cat /K m <10-fold change) and resistance to nirmatrelvir (K i >10-fold increase). X-ray crystal structures were determined for seven representative mutants with and/or without GC-376/nirmatrelvir. Viral growth assay showed that M pro mutants with reduced enzymatic activity led to attenuated viral replication. Overall, our study identified several drug resistant hot spots that warrant close monitoring for possible clinical evidence of Paxlovid resistance. One Sentence Summary: Paxlovid resistant SARS-CoV-2 viruses with mutations in the main protease have been identified from clinical isolates.

7.
Viruses ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34578324

RESUMO

The pandemic of COVID-19 caused by SARS-CoV-2 infection continues to spread around the world. Vaccines that elicit protective immunity have reduced infection and mortality, however new viral variants are arising that may evade vaccine-induced immunity or cause disease in individuals who are unable to develop robust vaccine-induced responses. Investigating the role of viral variants in causing severe disease, evading vaccine-elicited immunity, and infecting vulnerable individuals is important for developing strategies to control the pandemic. Here, we report fourteen breakthrough infections of SARS-CoV-2 in vaccinated individuals with symptoms ranging from asymptomatic/mild (6/14) to severe disease (8/14). High viral loads with a median Ct value of 19.6 were detected in the nasopharyngeal specimens from subjects regardless of disease severity. Sequence analysis revealed four distinct virus lineages, including alpha and gamma variants of concern. Immunosuppressed individuals were more likely to be hospitalized after infection (p = 0.047), however no specific variant was associated with severe disease. Our results highlight the high viral load that can occur in asymptomatic breakthrough infections and the vulnerability of immunosuppressed individuals to post-vaccination infections by diverse variants of SARS-CoV-2.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Hospedeiro Imunocomprometido , SARS-CoV-2 , Idoso , COVID-19/diagnóstico , COVID-19/imunologia , Feminino , Genoma Viral , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Vacinas/imunologia , Carga Viral
8.
Virology ; 553: 35-45, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33220618

RESUMO

We report the generation of a full-length infectious cDNA clone for porcine deltacoronavirus strain USA/IL/2014/026. Similar to the parental strain, the infectious clone virus (icPDCoV) replicated efficiently in cell culture and caused mild clinical symptoms in piglets. To investigate putative viral interferon (IFN) antagonists, we generated two mutant viruses: a nonstructural protein 15 mutant virus that encodes a catalytically-inactive endoribonuclease (icEnUmut), and an accessory gene NS6-deletion virus in which the NS6 gene was replaced with the mNeonGreen sequence (icDelNS6/nG). By infecting PK1 cells with these recombinant PDCoVs, we found that icDelNS6/nG elicited similar levels of type I IFN responses as icPDCoV, however icEnUmut stimulated robust type I IFN responses, demonstrating that the deltacoronavirus endoribonuclease, but not NS6, functions as an IFN antagonist in PK1 cells. Collectively, the construction of a full-length infectious clone and the identification of an IFN-antagonistic endoribonuclease will aid in the development of live-attenuated deltacoronavirus vaccines.


Assuntos
DNA Complementar/isolamento & purificação , Deltacoronavirus/genética , Suínos/virologia , Animais , Células Clonais , Infecções por Coronavirus/patologia , Deltacoronavirus/patogenicidade , Deltacoronavirus/fisiologia , Endorribonucleases/fisiologia , Interferons/antagonistas & inibidores , Replicação Viral
9.
PLoS Pathog ; 16(10): e1009035, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33108395

RESUMO

The tumor suppressor p53 as an innate antiviral regulator contributes to restricting Japanese encephalitis virus (JEV) replication, but the mechanism is still unclear. The interferon-induced transmembrane protein 3 (IFITM3) is an intrinsic barrier to a range of virus infection, whether IFITM3 is responsible for the p53-mediated anti-JEV response remains elusive. Here, we found that IFITM3 significantly inhibited JEV replication in a protein-palmitoylation-dependent manner and incorporated into JEV virions to diminish the infectivity of progeny viruses. Palmitoylation was also indispensible for keeping IFITM3 from lysosomal degradation to maintain its protein stability. p53 up-regulated IFITM3 expression at the protein level via enhancing IFITM3 palmitoylation. Screening of palmitoyltransferases revealed that zinc finger DHHC domain-containing protein 1 (ZDHHC1) was transcriptionally up-regulated by p53, and consequently ZDHHC1 interacted with IFITM3 to promote its palmitoylation and stability. Knockdown of IFITM3 significantly impaired the inhibitory role of ZDHHC1 on JEV replication. Meanwhile, knockdown of either ZDHHC1 or IFITM3 expression also compromised the p53-mediated anti-JEV effect. Interestingly, JEV reduced p53 expression to impair ZDHHC1 mediated IFITM3 palmitoylation for viral evasion. Our data suggest the existence of a previously unrecognized p53-ZDHHC1-IFITM3 regulatory pathway with an essential role in restricting JEV infection and provide a novel insight into JEV-host interaction.


Assuntos
Aciltransferases/metabolismo , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Replicação Viral/fisiologia , Células A549 , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Encefalite Japonesa/metabolismo , Encefalite Japonesa/virologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Lipoilação , Células Vero
10.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32554697

RESUMO

Coronaviruses (CoVs) have repeatedly emerged from wildlife hosts and infected humans and livestock animals to cause epidemics with significant morbidity and mortality. CoVs infect various organs, including respiratory and enteric systems, as exemplified by newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The constellation of viral factors that contribute to developing enteric disease remains elusive. Here, we investigated CoV interferon antagonists for their contribution to enteric pathogenesis. Using an infectious clone of an enteric CoV, porcine epidemic diarrhea virus (icPEDV), we generated viruses with inactive versions of interferon antagonist nonstructural protein 1 (nsp1), nsp15, and nsp16 individually or combined into one virus designated icPEDV-mut4. Interferon-responsive PK1 cells were infected with these viruses and produced higher levels of interferon responses than were seen with wild-type icPEDV infection. icPEDV-mut4 elicited robust interferon responses and was severely impaired for replication in PK1 cells. To evaluate viral pathogenesis, piglets were infected with either icPEDV or icPEDV-mut4. While the icPEDV-infected piglets exhibited clinical disease, the icPEDV-mut4-infected piglets showed no clinical symptoms and exhibited normal intestinal pathology at day 2 postinfection. icPEDV-mut4 replicated in the intestinal tract, as revealed by detection of viral RNA in fecal swabs, with sequence analysis documenting genetic stability of the input strain. Importantly, icPEDV-mut4 infection elicited IgG and neutralizing antibody responses to PEDV. These results identify nsp1, nsp15, and nsp16 as virulence factors that contribute to the development of PEDV-induced diarrhea in swine. Inactivation of these CoV interferon antagonists is a rational approach for generating candidate vaccines to prevent disease and spread of enteric CoVs, including SARS-CoV-2.IMPORTANCE Emerging coronaviruses, including SARS-CoV-2 and porcine CoVs, can infect enterocytes, cause diarrhea, and be shed in the feces. New approaches are needed to understand enteric pathogenesis and to develop vaccines and therapeutics to prevent the spread of these viruses. Here, we exploited a reverse genetic system for an enteric CoV, porcine epidemic diarrhea virus (PEDV), and outline an approach of genetically inactivating highly conserved viral factors known to limit the host innate immune response to infection. Our report reveals that generating PEDV with inactive versions of three viral interferon antagonists, nonstructural proteins 1, 15, and 16, results in a highly attenuated virus that does not cause diarrhea in animals and elicits a neutralizing antibody response in virus-infected animals. This strategy may be useful for generating live attenuated vaccine candidates that prevent disease and fecal spread of enteric CoVs, including SARS-CoV-2.


Assuntos
Infecções por Coronavirus/imunologia , Coronavirus/imunologia , Interferons/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Vacinas Atenuadas/imunologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Betacoronavirus/imunologia , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/prevenção & controle , Diarreia/patologia , Diarreia/virologia , Modelos Animais de Doenças , Endorribonucleases/antagonistas & inibidores , Fezes/virologia , Íleo/patologia , Imunidade Inata , Jejuno/patologia , Pandemias , Pneumonia Viral/imunologia , Vírus da Diarreia Epidêmica Suína/genética , RNA Viral , RNA Polimerase Dependente de RNA , SARS-CoV-2 , Suínos , Doenças dos Suínos/virologia , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
11.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188728

RESUMO

Coronaviruses express a multifunctional papain-like protease, termed papain-like protease 2 (PLP2). PLP2 acts as a protease that cleaves the viral replicase polyprotein and as a deubiquitinating (DUB) enzyme which removes ubiquitin (Ub) moieties from ubiquitin-conjugated proteins. Previous in vitro studies implicated PLP2/DUB activity as a negative regulator of the host interferon (IFN) response, but the role of DUB activity during virus infection was unknown. Here, we used X-ray structure-guided mutagenesis and functional studies to identify amino acid substitutions within the ubiquitin-binding surface of PLP2 that reduced DUB activity without affecting polyprotein processing activity. We engineered a DUB mutation (Asp1772 to Ala) into a murine coronavirus and evaluated the replication and pathogenesis of the DUB mutant virus (DUBmut) in cultured macrophages and in mice. We found that the DUBmut virus replicates similarly to the wild-type (WT) virus in cultured cells, but the DUBmut virus activates an IFN response at earlier times compared to the wild-type virus infection in macrophages, consistent with DUB activity negatively regulating the IFN response. We compared the pathogenesis of the DUBmut virus to that of the wild-type virus and found that the DUBmut-infected mice had a statistically significant reduction (P < 0.05) in viral titer in liver and spleen at day 5 postinfection (d p.i.), although both wild-type and DUBmut virus infections resulted in similar liver pathology. Overall, this study demonstrates that structure-guided mutagenesis aids the identification of critical determinants of the PLP2-ubiquitin complex and that PLP2/DUB activity plays a role as an interferon antagonist in coronavirus pathogenesis.IMPORTANCE Coronaviruses employ a genetic economy by encoding multifunctional proteins that function in viral replication and also modify the host environment to disarm the innate immune response. The coronavirus papain-like protease 2 (PLP2) domain possesses protease activity, which cleaves the viral replicase polyprotein, and also DUB activity (deconjugating ubiquitin/ubiquitin-like molecules from modified substrates) using identical catalytic residues. To separate the DUB activity from the protease activity, we employed a structure-guided mutagenesis approach and identified residues that are important for ubiquitin binding. We found that mutating the ubiquitin-binding residues results in a PLP2 that has reduced DUB activity but retains protease activity. We engineered a recombinant murine coronavirus to express the DUB mutant and showed that the DUB mutant virus activated an earlier type I interferon response in macrophages and exhibited reduced replication in mice. The results of this study demonstrate that PLP2/DUB is an interferon antagonist and a virulence trait of coronaviruses.


Assuntos
Infecções por Coronavirus/virologia , Vírus da Hepatite Murina/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Modelos Moleculares , Vírus da Hepatite Murina/patogenicidade , Mutagênese , Conformação Proteica , Relação Estrutura-Atividade , Ubiquitinação , Proteínas Virais/química , Virulência , Replicação Viral
12.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188729

RESUMO

Coronaviruses (CoVs) encode multiple interferon (IFN) antagonists that modulate the host response to virus replication. Here, we evaluated the host transcriptional response to infection with murine coronaviruses encoding independent mutations in one of two different viral antagonists, the deubiquitinase (DUB) within nonstructural protein 3 or the endoribonuclease (EndoU) within nonstructural protein 15. We used transcriptomics approaches to compare the scope and kinetics of the host response to the wild-type (WT), DUBmut, and EndoUmut viruses in infected macrophages. We found that the EndoUmut virus activates a focused response that predominantly involves type I interferons and interferon-related genes, whereas the WT and DUBmut viruses more broadly stimulate upregulation of over 2,800 genes, including networks associated with activating the unfolded protein response (UPR) and the proinflammatory response associated with viral pathogenesis. This study highlights the role of viral interferon antagonists in shaping the kinetics and magnitude of the host response during virus infection and demonstrates that inactivating a dominant viral antagonist, the coronavirus endoribonuclease, dramatically alters the host response in macrophages.IMPORTANCE Macrophages are an important cell type during coronavirus infections because they "notice" the infection and respond by inducing type I interferons, which limits virus replication. In turn, coronaviruses encode proteins that mitigate the cell's ability to signal an interferon response. Here, we evaluated the host macrophage response to two independent mutant coronaviruses, one with reduced deubiquitinating activity (DUBmut) and the other containing an inactivated endoribonuclease (EndoUmut). We observed a rapid, robust, and focused response to the EndoUmut virus, which was characterized by enhanced expression of interferon and interferon-related genes. In contrast, wild-type virus and the DUBmut virus elicited a more limited interferon response and ultimately activated over 2,800 genes, including players in the unfolded protein response and proinflammatory pathways associated with progression of significant disease. This study reveals that EndoU activity substantially contributes to the ability of coronaviruses to evade the host innate response and to replicate in macrophages.


Assuntos
Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Coronavirus/fisiologia , Endorribonucleases/metabolismo , Interferons/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Biologia Computacional , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Citocinas/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Camundongos , Modelos Biológicos , Mutação , RNA Viral , Resposta a Proteínas não Dobradas
13.
Proc Natl Acad Sci U S A ; 117(14): 8094-8103, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198201

RESUMO

Coronaviruses (CoVs) are positive-sense RNA viruses that can emerge from endemic reservoirs and infect zoonotically, causing significant morbidity and mortality. CoVs encode an endoribonuclease designated EndoU that facilitates evasion of host pattern recognition receptor MDA5, but the target of EndoU activity was not known. Here, we report that EndoU cleaves the 5'-polyuridines from negative-sense viral RNA, termed PUN RNA, which is the product of polyA-templated RNA synthesis. Using a virus containing an EndoU catalytic-inactive mutation, we detected a higher abundance of PUN RNA in the cytoplasm compared to wild-type-infected cells. Furthermore, we found that transfecting PUN RNA into cells stimulates a robust, MDA5-dependent interferon response, and that removal of the polyuridine extension on the RNA dampens the response. Overall, the results of this study reveal the PUN RNA to be a CoV MDA5-dependent pathogen-associated molecular pattern (PAMP). We also establish a mechanism for EndoU activity to cleave and limit the accumulation of this PAMP. Since EndoU activity is highly conserved in all CoVs, inhibiting this activity may serve as an approach for therapeutic interventions against existing and emerging CoV infections.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Coronavirus/metabolismo , Endorribonucleases/metabolismo , Poli U/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Coronavirus/enzimologia , Coronavirus/imunologia , Endorribonucleases/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Interferons/farmacologia , Poli U/química , RNA Viral/genética , RNA Viral/metabolismo , Uridina/química , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral/fisiologia
14.
J Virol ; 93(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30918076

RESUMO

Analysis of temperature-sensitive (ts) mutant viruses is a classic method allowing researchers to identify genetic loci involved in viral replication and pathogenesis. Here, we report genetic analysis of a ts strain of mouse hepatitis virus (MHV), tsNC11, focusing on the role of mutations in the macrodomain (MAC) and the papain-like protease 2 (PLP2) domain of nonstructural protein 3 (nsp3), a component of the viral replication complex. Using MHV reverse genetics, we generated a series of mutant viruses to define the contributions of macrodomain- and PLP2-specific mutations to the ts phenotype. Viral replication kinetics and efficiency-of-plating analysis performed at permissive and nonpermissive temperatures revealed that changes in the macrodomain alone were both necessary and sufficient for the ts phenotype. Interestingly, mutations in the PLP2 domain were not responsible for the temperature sensitivity but did reduce the frequency of reversion of macrodomain mutants. Coimmunoprecipitation studies are consistent with an interaction between the macrodomain and PLP2. Expression studies of the macrodomain-PLP2 portion of nsp3 indicate that the ts mutations enhance proteasome-mediated degradation of the protein. Furthermore, we found that during virus infection, the replicase proteins containing the MAC and PLP2 mutations were more rapidly degraded at the nonpermissive temperature than were the wild-type proteins. Importantly, we show that the macrodomain and PLP2 mutant viruses trigger production of type I interferon in vitro and are attenuated in mice, further highlighting the importance of the macrodomain-PLP2 interplay in viral pathogenesis.IMPORTANCE Coronaviruses (CoVs) are emerging human and veterinary pathogens with pandemic potential. Despite the established and predicted threat these viruses pose to human health, there are currently no approved countermeasures to control infections with these viruses in humans. Viral macrodomains, enzymes that remove posttranslational ADP-ribosylation of proteins, and viral multifunctional papain-like proteases, enzymes that cleave polyproteins and remove polyubiquitin chains via deubiquitinating activity, are two important virulence factors. Here, we reveal an unanticipated interplay between the macrodomain and the PLP2 domain that is important for replication and antagonizing the host innate immune response. Targeting the interaction of these enzymes may provide new therapeutic opportunities to treat CoV disease.


Assuntos
Vírus da Hepatite Murina/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Animais , Linhagem Celular , Coronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus , Células HEK293 , Humanos , Imunidade Inata/imunologia , Interferon Tipo I/metabolismo , Camundongos , Papaína/genética , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Domínios Proteicos , Temperatura , Proteínas não Estruturais Virais/genética , Fatores de Virulência/metabolismo
15.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728254

RESUMO

Identifying viral antagonists of innate immunity and determining if they contribute to pathogenesis are critical for developing effective strategies to control emerging viruses. Previously, we reported that an endoribonuclease (EndoU) encoded by murine coronavirus plays a pivotal role in evasion of host innate immune defenses in macrophages. Here, we asked if the EndoU activity of porcine epidemic diarrhea coronavirus (PEDV), which causes acute diarrhea in swine, plays a role in antagonizing the innate response in porcine epithelial cells and macrophages, the sites of viral replication. We constructed an infectious clone of PEDV-Colorado strain (icPEDV-wt) and an EndoU-mutant PEDV (icPEDV-EnUmt) by changing the codon for a catalytic histidine residue of EndoU to alanine (His226Ala). We found that both icPEDV-wt and icPEDV-EnUmt propagated efficiently in interferon (IFN)-deficient Vero cells. In contrast, the propagation of icPEDV-EnUmt was impaired in porcine epithelial cells (LLC-PK1), where we detected an early and robust transcriptional activation of type I and type III IFNs. Infection of piglets with the parental Colorado strain, icPEDV-wt, or icPEDV-EnUmt revealed that all viruses replicated in the gut and induced diarrhea; however, there was reduced viral shedding and mortality in the icPEDV-EnUmt-infected animals. These results demonstrate that EndoU activity is not required for PEDV replication in immortalized, IFN-deficient Vero cells, but is important for suppressing the IFN response in epithelial cells and macrophages, which facilitates replication, shedding, and pathogenesis in vivo We conclude that PEDV EndoU activity is a key virulence factor that suppresses both type I and type III IFN responses.IMPORTANCE Coronaviruses (CoVs) can emerge from an animal reservoir into a naive host species to cause pandemic respiratory or gastrointestinal diseases with significant mortality in humans or domestic animals. Porcine epidemic diarrhea virus (PEDV), an alphacoronavirus (alpha-CoV), infects gut epithelial cells and macrophages, inducing diarrhea and resulting in high mortality in piglets. How PEDV suppresses the innate immune response was unknown. We found that mutating a viral endoribonuclease, EndoU, results in a virus that activates both the type I interferon response and the type III interferon response in macrophages and epithelial cells. This activation of interferon resulted in limited viral replication in epithelial cell cultures and was associated with reduced virus shedding and mortality in piglets. This study reveals a role for EndoU activity as a virulence factor in PEDV infection and provides an approach for generating live-attenuated vaccine candidates for emerging coronaviruses.


Assuntos
Infecções por Coronavirus , Endorribonucleases , Interferon Tipo I/imunologia , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Proteínas Virais , Animais , Linhagem Celular , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Endorribonucleases/genética , Endorribonucleases/imunologia , Interferon Tipo I/genética , Vírus da Diarreia Epidêmica Suína/enzimologia , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/imunologia , Suínos , Doenças dos Suínos/enzimologia , Doenças dos Suínos/genética , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Eliminação de Partículas Virais/imunologia
16.
Virology ; 517: 157-163, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29307596

RESUMO

Here we review the evolving story of the coronavirus endoribonuclease (EndoU). Coronavirus EndoU is encoded within the sequence of nonstructural protein (nsp) 15, which was initially identified as a component of the viral replication complex. Biochemical and structural studies revealed the enzymatic nature of nsp15/EndoU, which was postulated to be essential for the unique replication cycle of viruses in the order Nidovirales. However, the role of nsp15 in coronavirus replication was enigmatic as EndoU-deficient coronaviruses were viable and replicated to near wild-type virus levels in fibroblast cells. A breakthrough in our understanding of the role of EndoU was revealed in recent studies, which showed that EndoU mediates the evasion of viral double-stranded RNA recognition by host sensors in macrophages. This new discovery of nsp15/EndoU function leads to new opportunities for investigating how a viral EndoU contributes to pathogenesis and exploiting this enzyme for therapeutics and vaccine design against pathogenic coronaviruses.


Assuntos
Infecções por Coronavirus/imunologia , Coronavirus/enzimologia , Endorribonucleases/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Animais , Proteínas não Estruturais Virais , Replicação Viral
17.
Proc Natl Acad Sci U S A ; 114(21): E4251-E4260, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484023

RESUMO

Coronaviruses are positive-sense RNA viruses that generate double-stranded RNA (dsRNA) intermediates during replication, yet evade detection by host innate immune sensors. Here we report that coronavirus nonstructural protein 15 (nsp15), an endoribonuclease, is required for evasion of dsRNA sensors. We evaluated two independent nsp15 mutant mouse coronaviruses, designated N15m1 and N15m3, and found that these viruses replicated poorly and induced rapid cell death in mouse bone marrow-derived macrophages. Infection of macrophages with N15m1, which expresses an unstable nsp15, or N15m3, which expresses a catalysis-deficient nsp15, activated MDA5, PKR, and the OAS/RNase L system, resulting in an early, robust induction of type I IFN, PKR-mediated apoptosis, and RNA degradation. Immunofluorescence imaging of nsp15 mutant virus-infected macrophages revealed significant dispersal of dsRNA early during infection, whereas in WT virus-infected cells, the majority of the dsRNA was associated with replication complexes. The loss of nsp15 activity also resulted in greatly attenuated disease in mice and stimulated a protective immune response. Taken together, our findings demonstrate that coronavirus nsp15 is critical for evasion of host dsRNA sensors in macrophages and reveal that modulating nsp15 stability and activity is a strategy for generating live-attenuated vaccines.


Assuntos
Coronavirus/genética , Coronavirus/imunologia , Macrófagos/imunologia , RNA de Cadeia Dupla/genética , Proteínas não Estruturais Virais/genética , Animais , Apoptose/genética , Apoptose/imunologia , Linhagem Celular , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Cricetinae , Endorribonucleases/metabolismo , Ativação Enzimática/genética , Imunidade Inata/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Macrófagos/virologia , Camundongos , Proteínas não Estruturais Virais/imunologia
19.
BMC Med Genomics ; 8: 52, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26282854

RESUMO

BACKGROUND: p53 is a tumor suppressor that contributes to the host immune response against viral infections in addition to its well-established protective role against cancer development. In response to influenza A virus (IAV) infection, p53 is activated and plays an essential role in inhibiting IAV replication. As a transcription factor, p53 regulates the expression of a range of downstream responsive genes either directly or indirectly in response to viral infection. We compared the expression profiles of immune-related genes between IAV-infected wild-type p53 (p53WT) and p53-deficient (p53KO) mice to gain an insight into the basis of p53-mediated antiviral response. METHODS: p53KO and p53WT mice were infected with influenza A/Puerto Rico/8/1934 (PR8) strain. Clinical symptoms and body weight changes were monitored daily. Lung specimens of IAV-infected mice were collected for analysis of virus titers and gene expression profiles. The difference in immune-related gene expression levels between IAV-infected p53KO and p53WT mice was comparatively determined using microarray analysis and confirmed by quantitative real-time reverse transcription polymerase chain reaction. RESULTS: p53KO mice showed an increased susceptibility to IAV infection compared to p53WT mice. Microarray analysis of gene expression profiles in the lungs of IAV-infected mice indicated that the increased susceptibility was associated with significantly changed expression levels in a range of immune-related genes in IAV-infected p53KO mice. A significantly attenuated expression of Ifng (encoding interferon (IFN)-gamma), Irf7 (encoding IFN regulator factor 7), and antiviral genes, such as Mx2 and Eif2ak2 (encoding PKR), were observed in IAV-infected p53KO mice, suggesting an impaired IFN-mediated immune response against IAV infection in the absence of p53. In addition, dysregulated expression levels of proinflammatory cytokines and chemokines, such as Ccl2 (encoding MCP-1), Cxcl9, Cxcl10 (encoding IP-10), and Tnf, were detected in IAV-infected p53KO mice during early IAV infection, reflecting an aberrant inflammatory response. CONCLUSION: Lack of p53 resulted in the impaired expression of genes involved in IFN signaling and the dysregulated expression of cytokine and chemokine genes in IAV-infected mice, suggesting an essential role of p53 in the regulation of antiviral and inflammatory responses during IAV infection.


Assuntos
Regulação da Expressão Gênica/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Transdução de Sinais/imunologia , Transcrição Gênica/imunologia , Proteína Supressora de Tumor p53/deficiência , Animais , Citocinas/genética , Citocinas/imunologia , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Vírus da Influenza A Subtipo H1N1/genética , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Transdução de Sinais/genética , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/imunologia
20.
J Virol ; 89(9): 4907-17, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25694594

RESUMO

UNLABELLED: Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE: Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis.


Assuntos
Vírus da Hepatite Murina/enzimologia , Vírus da Hepatite Murina/fisiologia , Peptídeo Hidrolases/metabolismo , Replicação Viral , Animais , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Análise Mutacional de DNA , Estabilidade Enzimática , Feminino , Hepatite Viral Animal/patologia , Hepatite Viral Animal/virologia , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/patogenicidade , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeo Hidrolases/química , Estrutura Terciária de Proteína , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...