Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174275, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38936727

RESUMO

Schwertmannite (Sch) is found in environments abundant in iron and sulfate. Microorganisms that utilize iron or sulfate can induce the phase transition of Schwertmannite, consequently leading to the redistribution of coexisting pollutants. However, the impact of the molar ratio of sulfate to iron (S/Fe) on the microbial-mediated transformation of Schwertmannite and its implications for the fate of cadmium (Cd) have not been elucidated. In this study, we examined how S/Fe influenced mineral transformation and the fate of Cd during microbial reduction of Cd-loaded Schwertmannite by Desulfovibrio vulgaris. Our findings revealed that an increase in the S/Fe ratio facilitated sulfate-reducing bacteria (SRB) in mitigating the toxicity of Cd, thereby expediting the generation of sulfide (S(-II)) and subsequently triggering mineral phase transformation. As the S/Fe ratio increased, the predominant minerals in the system transitioned from prismatic-cluster vivianite to rose-shaped mackinawite. The Cd phase and distribution underwent corresponding alterations. Cd primarily existed in its oxidizable state, with its distribution being directly linked not only to FeS content but also showing a robust correlation with phosphorus. The coexistence of vivianite and FeS minerals proved to be more favorable for Cd immobilization. These findings have significant implications for understanding the biogeochemistry of iron (oxyhydr)oxides and Cd fate in anaerobic environments.


Assuntos
Cádmio , Sulfatos , Cádmio/metabolismo , Sulfatos/metabolismo , Compostos de Ferro/metabolismo , Desulfovibrio vulgaris/metabolismo , Oxirredução , Ferro/metabolismo , Biodegradação Ambiental , Sulfetos/metabolismo
2.
J Am Chem Soc ; 146(20): 13894-13902, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728606

RESUMO

Despite the fascinating developments in design and synthesis of artificial molecular machines operating at the nanoscales, translating molecular motion along multiple length scales and inducing mechanical motion of a three-dimensional macroscopic entity remains an important challenge. The key to addressing this amplification of motion relies on the effective organization of molecular machines in a well-defined environment. By taking advantage of long-range orientational order and hierarchical structures of liquid crystals and unidirectional rotation of light-driven molecular motors, we report here photoresponsive biomimetic functions of liquid crystal elastomers (LCEs) by the repetitive unidirectional rotation of molecular motors using 3D printing. Molecular motors were built in the main chain of liquid crystals oligomers to serve as photoactuators. The oligomers were then used as the ink, and liquid crystal elastomers with different morphologies were printed. The obtained LCEs are able to conduct multiple types of motions including bending, helical coiling, closing of petals, and flipping of wings of a butterfly upon UV illumination, which paves the way for future design of responsive materials with enhanced complex actuating functions.

3.
Light Sci Appl ; 13(1): 63, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429259

RESUMO

In the past two decades, the research and development of light-triggered molecular machines have mainly focused on developing molecular devices at the nanoscale. A key scientific issue in the field is how to amplify the controlled motion of molecules at the nanoscale along multiple length scales, such as the mesoscopic or the macroscopic scale, or in a more practical perspective, how to convert molecular motion into changes of properties of a macroscopic material. Light-driven molecular motors are able to perform repetitive unidirectional rotation upon irradiation, which offers unique opportunities for responsive macroscopic systems. With several reviews that focus on the design, synthesis and operation of the motors at the nanoscale, photo-responsive macroscopic materials based on light-driven molecular motors have not been comprehensively summarized. In the present review, we first discuss the strategy of confining absolute molecular rotation into relative rotation by grafting motors on surfaces. Secondly, examples of self-assemble motors in supramolecular polymers with high internal order are illustrated. Moreover, we will focus on building of motors in a covalently linked system such as polymeric gels and polymeric liquid crystals to generate complex responsive functions. Finally, a perspective toward future developments and opportunities is given. This review helps us getting a more and more clear picture and understanding on how complex movement can be programmed in light-responsive systems and how man-made adaptive materials can be invented, which can serve as an important guideline for further design of complex and advanced responsive materials.

4.
Int J Biol Macromol ; 262(Pt 2): 130084, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350584

RESUMO

Accidental bleeding is an unavoidable problem in daily life. To avoid the risk of excessive blood loss, it is urgent to design a functional material that can quickly stop bleeding. In this study, an efficient wound dressing for hemostasis was investigated. Based on the characteristics that Ca2+ and fish skin collagen (FSC) could activate the coagulation mechanism, hemostatic cotton was prepared by solvent replacement method using CaCl2, FSC, soluble starch (SS), and polyvinyl alcohol (PVA) as raw materials. The cytotoxicity test showed the Ca2+PVA/FSC-SS hemostatic cottons had good biocompatibility. The activated partial thromboplastin time (APTT) of Ca2+PVA/FSC-SS(4) was 35.34 s, which was 22.07 s faster than that of PVA/FSC-SS, indicating Ca2+PVA/FSC-SS mediated the endogenous coagulation system. In vitro coagulation test, Ca2+PVA/FSC-SS(4) could stop bleeding rapidly within 39.60 ± 5.16 s, and the ability of wound healing was higher than commercial product (Celox). This study developed a rapid procoagulant and hemostatic material, which had a promising application in a variety of environments.


Assuntos
Hemostáticos , Animais , Hemostáticos/farmacologia , Amido/farmacologia , Hemostasia , Coagulação Sanguínea , Colágeno , Álcool de Polivinil , Hemorragia , Etanol , Antibacterianos
5.
Int J Antimicrob Agents ; 63(2): 107073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141837

RESUMO

This quasi-experimental study aimed to investigate the changes in antibiotic use tailored by adjusting provincial antibiotic restriction lists in China using interrupted time-series analysis from 2013 to 2019. Antibiotic use was assessed as defined daily dose (DDD) per 1000 patients per day. Trends and level changes were analysed with segmented regression. The study identified 19 antibiotic formulations in four provinces with adjusted restriction levels (intervention group) and 110 formulations in the rest provinces without adjustments (comparison group). Antibiotics restriction level changed between two categories: (1) between 'highly-restricted' and 'restricted' and (2) between 'restricted' and 'non-restricted'. Analysis revealed distinct trend changes for antibiotics moving between 'highly-restricted' and 'restricted' (ß = 0.0211, P = 0.003) and 'restricted' to 'highly-restricted' (ß = -0.0039, P = 0.128) compared to the comparison group. After a 2-y adjustment period, when moving from 'restricted' to 'highly-restricted', absolute antibiotic utilisation significantly decreased (P < 0.001), with a relative decrease of 100.8% (P < 0.001) compared to the comparison group. Besides, individual antibiotics with higher consumption displayed greater responsiveness to adjustment. These findings underscore the changes in restriction level adjustments on antibiotics, highlighting antibiotic restriction list policies as crucial tools for antimicrobial stewardship.


Assuntos
Antibacterianos , Gestão de Antimicrobianos , Humanos , Antibacterianos/uso terapêutico , China , Análise de Séries Temporais Interrompida
6.
Ibrain ; 9(4): 463-472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38680511

RESUMO

Nowadays, with the development of the social health care system, there is an increasing trend towards an aging society. The incidence of Alzheimer's disease (AD) is also on the rise. AD is a kind of neurodegenerative disease that can be found in any age group. For years, scientists have been committing to discovering the cause of AD. DNA methylation is one of the most common epigenetic mechanisms in mammals and plays a vital role in the pathogenesis of several diseases, including tumors. Studying chemical changes in the epigenome, or DNA methylation can help us understand the effects of our environment and life on diseases, such as smoking, depression, and menopause, which may affect people's chances of developing Alzheimer's or other diseases. Recent studies have identified some crucial genes like ANK1, RHBDF2, ABCA7, and BIN1, linking DNA methylation to AD. This review focuses on elucidating the relationship between DNA methylation and the pathogenesis of AD and provides an outlook on possible targeted therapeutic modalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA