Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090393

RESUMO

Non-communicable diseases (NCDs) are defined as a kind of diseases closely related to bad behaviors and lifestyles, e.g., cardiovascular diseases, cancer, and diabetes. Driven by population growth and aging, NCDs have become the biggest disease burden in the world, and it is urgent to prevent and control these chronic diseases. Autophagy is an evolutionarily conserved process that degrade cellular senescent or malfunctioning organelles in lysosomes. Mounting evidence has demonstrated a major role of autophagy in the pathogenesis of cardiovascular diseases, cancer, and other major human diseases, suggesting that autophagy could be a candidate therapeutic target for NCDs. Natural products/phytochemicals are important resources for drugs against a wide variety of diseases. Recently, compounds from natural plants, such as resveratrol, curcumin, and ursolic acid, have been recognized as promising autophagy modulators. In this review, we address recent advances and the current status of the development of natural autophagy modulators in NCDs and provide an update of the latest in vitro and in vivo experiments that pave the way to clinical studies. Specifically, we focus on the relationship between natural autophagy modulators and NCDs, with an intent to identify natural autophagy modulators with therapeutic potential.

2.
J Mater Chem B ; 11(35): 8484-8491, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37593820

RESUMO

Chemodynamic therapy (CDT) is an emerging treatment strategy for cancer, but the low therapeutic efficacy and potential side effects still limit its applications. In this study, we report a semiconducting polymer nanocatalyst (PGFe) that can generate reactive oxygen species (ROS) only upon near-infrared (NIR) light-activation for photodynamic therapy (PDT)-synergized CDT. Such PGFe consists of a semiconducting polymer as a photosensitizer, iron oxide (Fe3O4) nanoparticles as CDT agents, and glucose oxidase (GOx), all of which are loaded into a singlet oxygen (1O2)-responsive nanocarrier. Under NIR laser irradiation, PGFe produces 1O2 through a photosensitizer-mediated PDT effect, and the produced 1O2 destroys the 1O2-responsive nanocarriers, leading to controlled releases of Fe3O4 nanoparticles and GOx. In a tumor microenvironment, GOx catalyzes glucose degradation to form hydrogen peroxide (H2O2), and thus the CDT effect of Fe3O4 nanoparticles is greatly improved. As such, an amplified ROS level in tumor cells is obtained by PGFe to induce cell death. PGFe can be utilized to treat subcutaneous 4T1 tumors, observably inhibiting the tumor growth and suppressing lung and liver metastasis. This study thus provides a NIR light-activated ROS generation strategy for precise and effective treatments of tumors.


Assuntos
Peróxido de Hidrogênio , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio , Raios Infravermelhos , Glucose Oxidase , Polímeros
3.
Neuropeptides ; 97: 102300, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36370658

RESUMO

BACKGROUND AND AIMS: The contractile effects of tachykinins on the gastrointestinal tract are well-known, but how they modulate slow-waves, particularly in species capable of emesis, remains largely unknown. We aimed to elucidate the effects of tachykinins on myoelectric and contractile activity of isolated gastrointestinal tissues of the Suncus murinus. METHODS: The effects of substance P (SP), neurokinin (NK)A, NKB and selective NK1 (CP122,721, CP99,994), NK2 (SR48,968, GR159,897) and NK3 (SB218,795, SB222,200) receptor antagonists on isolated stomach, duodenum, ileum and colon segments were studied. Mechanical contractile activity was recorded using isometric force displacement transducers. Electrical pacemaker activity was recorded using a microelectrode array. RESULTS: Compared with NKA, SP induced larger contractions in stomach tissue and smaller contractions in intestinal segments, where oscillation magnitudes increased in intestinal segments, but not the stomach. CP122,721 and GR159,897 inhibited electrical field stimulation-induced contractions of the stomach, ileum and colon. NKB and NK3 had minor effects on contractile activity. The inhibitory potencies of SP and NKA on the peristaltic frequency of the colon and ileum, respectively, were correlated with those on electrical pacemaker frequency. SP, NKA and NKB inhibited pacemaker activity of the duodenum and ileum, but increased that of the stomach and colon. SP elicited a dose-dependent contradictive pacemaker frequency response in the colon. CONCLUSION: This study revealed distinct effects of tachykinins on the mechanical and electrical properties of the stomach and colon vs. the proximal intestine, providing a unique aspect on neuromuscular correlation in terms of the effects of tachykinin on peristaltic and pacemaker activity in gastrointestinal-related symptoms.


Assuntos
Eméticos , Musaranhos , Animais , Eméticos/farmacologia , Taquicininas/farmacologia , Íleo , Substância P/farmacologia , Neurocinina A , Estômago , Duodeno , Colo , Músculo Liso , Contração Muscular/fisiologia , Receptores da Neurocinina-2
4.
J Phys Chem Lett ; 13(29): 6664-6673, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35839081

RESUMO

Delayed fluorescence (DF) emitters with high color purity are of high interest for applications in high-resolution displays. However, the charge transfer required by high emitting efficiency usually conflicts with the expected color purity. In this work, we investigated the S1/S0 conformational relaxation, spin-orbital coupling (SOC), and vibronic coupling of hot-exciton emitters while hybrid local and charge transfer (HLCT) state tuning was achieved by a structural meta-effect. The meta-linkage leads to suppressed S1/S0 conformational relaxation and weakened vibronic coupling, while the unsacrificed emitting efficiency is largely ensured by multiple rISC channels (Tn → Sm) with thermally accessible triplet-singlet energy gap (ΔEST) and effective SOC. We demonstrated that the unique excited-state mechanism provides opportunities to improve the emitting color purity of hot-exciton emitters without sacrificing emitting efficiency by HLCT state tuning with simple chemical structural modification, for which hot-exciton emitters might play a more important role for high-resolution organic light-emitting diode displays.


Assuntos
Fluorescência
5.
Sheng Li Xue Bao ; 71(3): 463-470, 2019 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-31218337

RESUMO

Anabolic-androgenic steroid (AAS) is responsible for muscle building and masculinizing. Using AAS can enhance muscle development and strength, and improve athletic performance. AAS abuse is not only seen in sport. Research has shown that there is an increasing number of adolescent AAS abusers. Adolescents are at a critical period of physical and mental development. Sex hormones are one of the important physiological factors affecting the development of their bodies and brains. Long-term or high-dose AAS treatment is likely to cause irreversible damage to their nervous system and psychological behavior, and these effects are easily overlooked. The article reviewed the long-term adverse effects of AAS on psychological behavior, emotion, cognitive functions and the nervous system of adolescents.


Assuntos
Anabolizantes/farmacologia , Cognição/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Esteroides/farmacologia , Adolescente , Humanos , Transtornos Relacionados ao Uso de Substâncias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA