Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 465
Filtrar
1.
Nat Commun ; 15(1): 3870, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719875

RESUMO

Micro-thermoelectric coolers are emerging as a promising solution for high-density cooling applications in confined spaces. Unlike thin-film micro-thermoelectric coolers with high cooling flux at the expense of cooling temperature difference due to very short thermoelectric legs, thick-film micro-thermoelectric coolers can achieve better comprehensive cooling performance. However, they still face significant challenges in both material preparation and device integration. Herein, we propose a design strategy which combines Bi2Te3-based thick film prepared by powder direct molding with micro-thermoelectric cooler integrated via phase-change batch transfer. Accurate thickness control and relatively high thermoelectric performance can be achieved for the thick film, and the high-density-integrated thick-film micro-thermoelectric cooler exhibits excellent performance with maximum cooling temperature difference of 40.6 K and maximum cooling flux of 56.5 W·cm-2 at room temperature. The micro-thermoelectric cooler also shows high temperature control accuracy (0.01 K) and reliability (over 30000 cooling cycles). Moreover, the device demonstrates remarkable capacity in power generation with normalized power density up to 214.0 µW · cm-2 · K-2. This study provides a general and scalable route for developing high-performance thick-film micro-thermoelectric cooler, benefiting widespread applications in thermal management of microsystems.

2.
Nat Commun ; 15(1): 3943, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729965

RESUMO

Ferroelectric materials have important applications in transduction, data storage, and nonlinear optics. Inorganic ferroelectrics such as lead zirconate titanate possess large polarization, though they are rigid and brittle. Ferroelectric polymers are light weight and flexible, yet their polarization is low, bottlenecked at 10 µC cm-2. Here we show poly(vinylidene fluoride) nanocomposite with only 0.94% of self-nucleated CH3NH3PbBr3 nanocrystals exhibits anomalously large polarization (~19.6 µC cm-2) while retaining superior stretchability and photoluminance, resulting in unprecedented electromechanical figures of merit among ferroelectrics. Comprehensive analysis suggests the enhancement is accomplished via delicate defect engineering, with field-induced Frenkel pairs in halide perovskite stabilized by the poled ferroelectric polymer through interfacial coupling. The strategy is general, working in poly(vinylidene fluoride-co-hexafluoropropylene) as well, and the nanocomposite is stable. The study thus presents a solution for overcoming the electromechanical dilemma of ferroelectrics while enabling additional optic-activity, ideal for multifunctional flexible electronics applications.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38716902

RESUMO

A scene that contains both old and instant events with a clear motion trail is visually intriguing and dynamic, which can convey a sense of change, transition, or evolution. Developing an eco-friendly delay display system offers a powerful tool for fusing old and instant events, which can be used for visualizing motion trails. Herein, we brighten triplet excitons of carbon nanodots (CNDs) and increase their emission yield by a multidimensional confinement strategy, and the CND-based delay display array is demonstrated. The intense confinement effects via multidimensional confinement strategy suppress nonradiative transitions, and 240% enhancement in the phosphorescence efficiency and 260% enhancement in the lifetime of the CNDs are thus realized. Considering their distinctive phosphorescence performances, a delay display array containing a 4 × 4 CND-based delay lighting device is demonstrated, which can provide ultralong phosphorescence over 7 s, and the motion that occurred in different timelines is recorded clearly. This finding will motivate the investigation of phosphorescent CNDs in motion trail recognition.

4.
J Multidiscip Healthc ; 17: 2371-2387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770171

RESUMO

Among cardiovascular diseases, hypertension is the most important risk factor for morbidity and mortality worldwide, and its pathogenesis is complex, involving genetic, dietary and environmental factors. The characteristics of the gut microbiota can vary in response to increased blood pressure (BP) and influence the development and progression of hypertension. This paper describes five aspects of the relationship between hypertension and the gut microbiota, namely, the different types of gut microbiota, metabolites of the gut microbiota, sympathetic activation, gut-brain interactions, the effects of exercise and dietary patterns and the treatment of the gut microbiota through probiotics, faecal microbiota transplantation (FMT) and herbal remedies, providing new clues for the future prevention of hypertension. Diet, exercise and traditional Chinese medicine may contribute to long-term improvements in hypertension, although the effects of probiotics and FMT still need to be validated in large populations.

5.
Front Microbiol ; 15: 1395583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746754

RESUMO

Thermal pollution from the cooling system of the nuclear power plants greatly changes the environmental and the ecological conditions of the receiving marine water body, but we know little about their impact on the steady-state transition of marine bacterioplankton communities. In this study, we used high-throughput sequencing based on the 16S rRNA gene to investigate the impact of the thermal pollution on the bacterioplankton communities in a subtropical bay (the Daya Bay). We observed that thermal pollution from the cooling system of the nuclear power plant caused a pronounced thermal gradient ranging from 19.6°C to 24.12°C over the whole Daya Bay. A temperature difference of 4.5°C between the northern and southern parts of the bay led to a regime shift in the bacterioplankton community structure. In the three typical scenarios of regime shifts, the steady-state transition of bacterioplankton community structure in response to temperature increasing was more likely consistent with an abrupt regime shift rather than a smooth regime or a discontinuous regime model. Water temperature was a decisive factor on the regime shift of bacterioplankton community structure. High temperature significantly decreased bacterioplankton diversity and shifted its community compositions. Cyanobium and Synechococcus of Cyanobacteria, NS5 marine group of Bacteroidota, and Vibrio of Gammaproteobacteria were found that favored high temperature environments. Furthermore, the increased water temperature significantly altered the community assembly of bacterioplankton in Daya Bay, with a substantial decrease in the proportion of drift and others, and a marked increase in the proportion of homogeneous selection. In summary, we proposed that seawater temperature increasing induced by the thermal pollution resulted in an abrupt regime shift of bacterioplankton community in winter subtropical bay. Our research might broad our understanding of marine microbial ecology under future conditions of global warming.

7.
Adv Sci (Weinh) ; : e2304908, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600652

RESUMO

Single-atom alloys (SAAs) have gained increasing prominence in the field of selective hydrogenation reactions due to their uniform distribution of active sites and the unique host-guest metal interactions. Herein, 15 SAAs are constructed to comprehensively elucidate the relationship between host-guest metal interaction and catalytic performance in the selective hydrogenation of 4-nitrostyrene (4-NS) by density functional theory (DFT) calculations. The results demonstrate that the SAAs with strong host-guest metal interactions exhibit a preference for N─O bond cleavage, and the reaction energy barrier of the hydrogenation process is primarily influenced by the host metal. Among them, Ir1Ni SAA stands out as the prime catalyst candidate, showcasing exceptional activity and selectivity. Furthermore, the Ir1Ni SAA is subsequently prepared through precise synthesis techniques and evaluated in the selective hydrogenation of 4-NS to 4-aminostyrene (4-AS). As anticipated, the Ir1Ni SAA demonstrates extraordinary catalytic performance (yield > 96%). In situ FT-IR experiments and DFT calculations further confirmed that the unique host-guest metal interaction at the Ir-Ni interface site of Ir1Ni SAA endows it with excellent 4-NS selective hydrogenation ability. This work provides valuable insights into enhancing the performance of SAAs catalysts in selective hydrogenation reactions by modulating the host-guest metal interactions.

8.
Kaohsiung J Med Sci ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634140

RESUMO

Slow transit constipation (STC) is one of the most common gastrointestinal disorders in children and adults worldwide. Paeoniflorin (PF), a monoterpene glycoside compound extracted from the dried root of Paeonia lactiflora, has been found to alleviate STC, but the mechanisms of its effect remain unclear. The present study aimed to investigate the effects and mechanisms of PF on intestinal fluid metabolism and visceral sensitization in rats with compound diphenoxylate-induced STC. Based on the evaluation of the laxative effect, the abdominal withdrawal reflex test, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry were used to detect the visceral sensitivity, fluid metabolism-related proteins, and acid-sensitive ion channel 3/extracellular signal-regulated kinase (ASIC3/ERK) pathway-related molecules. PF treatment not only attenuated compound diphenoxylate-induced constipation symptoms and colonic pathological damage in rats but also ameliorated colonic fluid metabolic disorders and visceral sensitization abnormalities, as manifested by increased colonic goblet cell counts and mucin2 protein expression, decreased aquaporin3 protein expression, improved abdominal withdrawal reflex scores, reduced visceral pain threshold, upregulated serum 5-hydroxytryptamine, and downregulated vasoactive intestinal peptide levels. Furthermore, PF activated the colonic ASIC3/ERK pathway in STC rats, and ASIC3 inhibition partially counteracted PF's modulatory effects on intestinal fluid and visceral sensation. In conclusion, PF alleviated impaired intestinal fluid metabolism and abnormal visceral sensitization in STC rats and thus relieved their symptoms through activation of the ASIC3/ERK pathway.

9.
J Phys Chem Lett ; 15(14): 3785-3795, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38557057

RESUMO

The development of cost-effective and anti-coking catalysts for propane dehydrogenation (PDH) is crucial. Here, non-noble metal-incorporated Ni-based catalysts (Ni3M, M = Sc, Ti, V, Mn, Fe, Co, Cu, Zn, Ga, Zr, Nb, Mo, In, Sn) were employed in the PDH process. The introduction of V, Nb, and Mo, with their strong carbon binding ability, created unique Ni-M cooperative sites, enhancing the catalytic performance. Other non-noble metals influenced the electronic structure of Ni, affecting the overall catalytic behavior. V and Nb exhibited a balanced combination of activity, selectivity, and stability, making them potential catalyst candidates. Microkinetic simulations revealed that Ni3V and Ni3Nb displayed high selectivity toward olefins with low apparent activation energies. This study emphasizes the significance of bimetallic synergy in enhancing PDH performance and provides new directions for the development of efficient alkane dehydrogenation catalyst development.

10.
New Phytol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622812

RESUMO

Boron (B) is crucial for plant growth and development. B deficiency can impair numerous physiological and metabolic processes, particularly in root development and pollen germination, seriously impeding crop growth and yield. However, the molecular mechanism underlying boron signal perception and signal transduction is rather limited. In this study, we discovered that CPK10, a calcium-dependent protein kinase in the CPK family, has the strongest interaction with the boron transporter BOR1. Mutations in CPK10 led to growth and root development defects under B-deficiency conditions, while constitutively active CPK10 enhanced plant tolerance to B deficiency. Furthermore, we found that CPK10 interacted with and phosphorylated BOR1 at the Ser689 residue. Through various biochemical analyses and complementation of B transport in yeast and plants, we revealed that Ser689 of BOR1 is important for its transport activity. In summary, these findings highlight the significance of the CPK10-BOR1 signaling pathway in maintaining B homeostasis in plants and provide targets for the genetic improvement of crop tolerance to B-deficiency stress.

11.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570190

RESUMO

Cardiovascular system develops from the lateral plate mesoderm. Its three primary cell lineages (hematopoietic, endothelial, and muscular) are specified by the sequential actions of conserved transcriptional factors. ETV2, a master regulator of mammalian hemangioblast development, however, is absent in the chicken genome and acts downstream of NPAS4L in zebrafish. Here, we investigated the epistatic relationship between NPAS4L and ETV2 in avian hemangioblast development. We showed that ETV2 is deleted in all 363 avian genomes analyzed. Mouse ETV2 induced LMO2, but not NPAS4L or SCL, expression in chicken mesoderm. Squamate (lizards, geckos, and snakes) genomes contain both NPAS4L and ETV2 In Madagascar ground gecko, both genes were expressed in developing hemangioblasts. Gecko ETV2 induced only LMO2 in chicken mesoderm. We propose that both NPAS4L and ETV2 were present in ancestral amniote, with ETV2 acting downstream of NPAS4L in endothelial lineage specification. ETV2 may have acted as a pioneer factor by promoting chromatin accessibility of endothelial-specific genes and, in parallel with NPAS4L loss in ancestral mammals, has gained similar function in regulating blood-specific genes.


Assuntos
Células-Tronco Hematopoéticas , Peixe-Zebra , Animais , Camundongos , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Aves , Mamíferos/metabolismo
12.
JMIR Med Inform ; 12: e48862, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557661

RESUMO

BACKGROUND: Triage is the process of accurately assessing patients' symptoms and providing them with proper clinical treatment in the emergency department (ED). While many countries have developed their triage process to stratify patients' clinical severity and thus distribute medical resources, there are still some limitations of the current triage process. Since the triage level is mainly identified by experienced nurses based on a mix of subjective and objective criteria, mis-triage often occurs in the ED. It can not only cause adverse effects on patients, but also impose an undue burden on the health care delivery system. OBJECTIVE: Our study aimed to design a prediction system based on triage information, including demographics, vital signs, and chief complaints. The proposed system can not only handle heterogeneous data, including tabular data and free-text data, but also provide interpretability for better acceptance by the ED staff in the hospital. METHODS: In this study, we proposed a system comprising 3 subsystems, with each of them handling a single task, including triage level prediction, hospitalization prediction, and length of stay prediction. We used a large amount of retrospective data to pretrain the model, and then, we fine-tuned the model on a prospective data set with a golden label. The proposed deep learning framework was built with TabNet and MacBERT (Chinese version of bidirectional encoder representations from transformers [BERT]). RESULTS: The performance of our proposed model was evaluated on data collected from the National Taiwan University Hospital (901 patients were included). The model achieved promising results on the collected data set, with accuracy values of 63%, 82%, and 71% for triage level prediction, hospitalization prediction, and length of stay prediction, respectively. CONCLUSIONS: Our system improved the prediction of 3 different medical outcomes when compared with other machine learning methods. With the pretrained vital sign encoder and repretrained mask language modeling MacBERT encoder, our multimodality model can provide a deeper insight into the characteristics of electronic health records. Additionally, by providing interpretability, we believe that the proposed system can assist nursing staff and physicians in taking appropriate medical decisions.

13.
Adv Mater ; : e2401869, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641342

RESUMO

Smart windows with radiative heat management capability using the sun and outer space as zero-energy thermodynamic resources have gained prominence, demonstrating a minimum carbon footprint. However, realizing on-demand thermal management throughout all seasons while reducing fossil energy consumption remains a formidable challenge. Herein, an energy-efficient smart window that enables actively tunable passive radiative cooling (PRC) and multimode heating regulation is demonstrated by integrating the emission-enhanced polymer-dispersed liquid crystal (SiO2@PRC PDLC) film and a low-emission layer deposited with carbon nanotubes. Specifically, this device can achieve a temperature close to the chamber interior ambient under solar irradiance of 700 W m-2, as well as a temperature drop of 2.3 °C at sunlight of 500 W m-2, whose multistage PRC efficiency can be rapidly adjusted by a moderate voltage. Meanwhile, synchronous cooperation of passive radiative heating (PRH), solar heating (SH), and electric heating (EH) endows this smart window with the capability to handle complicated heating situations during cold weather. Energy simulation reveals the substantial superiority of this device in energy savings compared with single-layer SiO2@PRC PDLC, normal glass, and commercial low-E glass when applied in different climate zones. This work provides a feasible pathway for year-round thermal management, presenting a huge potential in energy-saving applications.

14.
Micromachines (Basel) ; 15(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675345

RESUMO

Soft robots with good deformability and adaptability have important prospects in the bionics and intelligence field. However, current research into soft robots is primarily limited to the study of actuators and ignores the integrated use of functional devices and actuators. To enrich the functions of soft robots and expand their application fields, it is necessary to integrate various functional electronic devices into soft robots to perform diverse functions during dynamic deformation. Therefore, this paper discusses methods and strategies to manufacture optical stimuli-responsive soft actuators and integrate them into functional devices for soft robots. Specifically, laser cutting allows us to fabricate an optically responsive actuator structure, e.g., the curling direction can be controlled by adjusting the direction of the cutting line. Actuators with different bending curvatures, including nonbending, can be obtained by adjusting the cutting depth, cutting width, and the spacing of the cutting line, which makes it easy to obtain a folded structure. Thus, various actuators with complex shape patterns can be obtained. In addition, we demonstrate a fabrication scheme for a worm-like soft robot integrated with functional devices (LEDs are used in this paper). The local nonbending design provides an asymmetric structure that provides driving power and avoids damage to the functional circuit caused by the large deformation during movement. The integration of drive and function provides a new path for the application of soft robots in the intelligence and bionics field.

15.
Nature ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560995

RESUMO

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.

16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 568-576, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660868

RESUMO

OBJECTIVE: To investigate the effect of deacylase Sirtuin 5 in the recovery of hematopoietic stem cells (HSCs) after treated by 5-FU in mouse. METHODS: Flow cytometry was used to analyze the effect of SIRT5 deletion on the proportion of hematopoietic stem/progenitor cells (HSPCs) in bone marrow (BM), the proportion of T cells, B cells and myeloid cells (TBM) in peripheral blood (PB) and spleen, and the development of T cells in thymus. Mouse were treated with 5-FU to study the effect of SIRT5 deletion on the cell cycle, apoptosis and the proportion of HSPCs in BM. The effect of SIRT5 deletion on the proliferation of HSCs was analyzed by flow sorting in vitro. RESULTS: SIRT5 deletion did not affect the development of T cells in thymus and the proportion of TBM cells in PB and spleen compared with wild type mice. SIRT5 deletion increased proportion of HSPCs in BM. After 5-FU treatment, the proportion of HSCs in SIRT5 deletion mice was significant decreased (P < 0.05), the HSPC in SIRT5 deletion mice was activated from G0 to G1 phase (P < 0.05), and the proportion of early apoptosis increased (P < 0.05). By monoclonal culture in vitro, the ability of HSCs to form clones in SIRT5 deletion mice was decreased significantly (P < 0.05). CONCLUSION: SIRT5 deletion lead to a decreased the ability of HSCs to clone in vitro. SIRT5 deletion is not conducive to the recovery of HSPCs injury in mice under hematopoietic stress.


Assuntos
Fluoruracila , Células-Tronco Hematopoéticas , Sirtuínas , Animais , Camundongos , Apoptose , Células da Medula Óssea , Ciclo Celular , Proliferação de Células , Fluoruracila/farmacologia , Sirtuínas/genética , Baço/citologia , Linfócitos T , Timo/citologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-38465429

RESUMO

BACKGROUND: Tabersonine, a natural indole alkaloid derived from Apocynaceae plants, exhibits antiinflammatory and acetylcholinesterase inhibitory activities, among other pharmacological effects. However, its anti-tumor properties and the underlying molecular mechanisms remain underexplored. OBJECTIVE: The present study aims to investigate the anti-tumor effects of tabersonine and its mechanisms in inducing apoptosis in hepatocellular carcinoma. METHODS: The inhibitory effects of tabersonine on the viability and proliferation of liver cancer cells were evaluated using MTT assay and colony formation assay. AO/EB, Hoechst, and Annexin V-FITC/ PI staining techniques were employed to observe cell damage and apoptosis. JC-1 staining was used to detect changes in mitochondrial membrane potential. Western blot analysis was conducted to study the anti-tumor mechanism of tabersonine on liver cancer cells. Additionally, a xenograft model using mice hepatoma HepG2 cells was established to assess the anti-tumor potency of tabersonine in vivo. RESULTS AND DISCUSSION: Our findings revealed that tabersonine significantly inhibited cell viability and proliferation, inducing apoptosis in liver cancer cells. Treatment with tabersonine inhibited Akt phosphorylation, reduced mitochondrial membrane potential, promoted cytochrome c release from mitochondria to the cytoplasm, and increased the ratio of Bax to Bcl-2. These findings suggested that tabersonine induces apoptosis in liver cancer cells through the mitochondrial pathway. Furthermore, tabersonine treatment activated the death receptor pathway of apoptosis. In vivo studies demonstrated that tabersonine significantly inhibited xenograft tumor growth. CONCLUSION: Our study is the first to demonstrate that tabersonine induces apoptosis in HepG2 cells through both mitochondrial and death receptor apoptotic pathways, suggesting its potential as a therapeutic agent candidate for hepatic cancer.

18.
Nat Commun ; 15(1): 2365, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491012

RESUMO

It remains a challenge to obtain biocompatible afterglow materials with long emission wavelengths, durable lifetimes, and good water solubility. Herein we develop a photooxidation strategy to construct near-infrared afterglow carbon nanodots with an extra-long lifetime of up to 5.9 h, comparable to that of the well-known rare-earth or organic long-persistent luminescent materials. Intriguingly, size-dependent afterglow lifetime evolution from 3.4 to 5.9 h has been observed from the carbon nanodots systems in aqueous solution. With structural/ultrafast dynamics analysis and density functional theory simulations, we reveal that the persistent luminescence in carbon nanodots is activated by a photooxidation-induced dioxetane intermediate, which can slowly release and convert energy into luminous emission via the steric hindrance effect of nanoparticles. With the persistent near-infrared luminescence, tissue penetration depth of 20 mm can be achieved. Thanks to the high signal-to-background ratio, biological safety and cancer-specific targeting ability of carbon nanodots, ultralong-afterglow guided surgery has been successfully performed on mice model to remove tumor tissues accurately, demonstrating potential clinical applications. These results may facilitate the development of long-lasting luminescent materials for precision tumor resection.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Luminescência
19.
Parasitol Res ; 123(3): 168, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517567

RESUMO

Cattle ticks (Rhipicephalus microplus) are important economic ectoparasites causing direct and indirect damage to cattle and leading to severe economic losses in cattle husbandry. It is common knowledge that R. microplus is a species complex including five clades; however, the relationships within the R. microplus complex remain unresolved. In the present study, we assembled the complete mitochondrial genome of clade C by next-generation sequencing and proved its correctness based on long PCR amplification. It was 15,004 bp in length and consisted of 13 protein genes, 22 transfer genes, and two ribosomal genes located in the two strains. There were two copies of the repeat region (pseudo-nad1 and tRNA-Glu). Data revealed that cox1, cox2, and cox3 genes were conserved within R. microplus with small genetic differences. Ka/Ks ratios suggested that 12 protein genes (excluding nad6) may be neutral selection. The genetic and phylogenetic analyses indicated that clade C was greatly close to clade B. Findings in the current study provided more data for the identification and differentiation of the R. microplus complex and made up for the lack of information about R. microplus clade C.


Assuntos
Doenças dos Bovinos , Genoma Mitocondrial , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Rhipicephalus/genética , Filogenia , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia , Doenças dos Bovinos/parasitologia
20.
Data Brief ; 53: 110195, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38435736

RESUMO

The standard penetration test (SPT), seismic cone penetration test (SCPT), and various in-situ seismic tests are commonly utilized for geotechnical site investigations. The investigated data via these tests are widely adopted to capture site characteristics for geotechnical engineering design. However, site characterizations vary in the above in-situ tests, which leads to uncertainties in the corresponding engineering analysis and design. To address these variabilities, this paper meticulously carried out the above-mentioned geotechnical in-situ tests with rigorous supervision at 13 selected sites in the Taipei Basin, yielding several valuable datasets. The datasets consist of digital investigation data including SPT-N, soil classification, CPT-qc and -fs, and the shear wave velocities (Vs) obtained from different measurements. We believe that these datasets will be beneficial for conducting various calibration studies for different geotechnical investigation methods and the corresponding geotechnical parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...