Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sensors (Basel) ; 24(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38676003

RESUMO

With the emergence of wireless rechargeable sensor networks (WRSNs), the possibility of wirelessly recharging nodes using mobile charging vehicles (MCVs) has become a reality. However, existing approaches overlook the effective integration of node energy replenishment and mobile data collection processes. In this paper, we propose a joint energy replenishment and data collection scheme (D-JERDG) for WRSNs based on deep reinforcement learning. By capitalizing on the high mobility of unmanned aerial vehicles (UAVs), D-JERDG enables continuous visits to the cluster head nodes in each cluster, facilitating data collection and range-based charging. First, D-JERDG utilizes the K-means algorithm to partition the network into multiple clusters, and a cluster head selection algorithm is proposed based on an improved dynamic routing protocol, which elects cluster head nodes based on the remaining energy and geographical location of the cluster member nodes. Afterward, the simulated annealing (SA) algorithm determines the shortest flight path. Subsequently, the DRL model multiobjective deep deterministic policy gradient (MODDPG) is employed to control and optimize the UAV instantaneous heading and speed, effectively planning UAV hover points. By redesigning the reward function, joint optimization of multiple objectives such as node death rate, UAV throughput, and average flight energy consumption is achieved. Extensive simulation results show that the proposed D-JERDG achieves joint optimization of multiple objectives and exhibits significant advantages over the baseline in terms of throughput, time utilization, and charging cost, among other indicators.

3.
Plant Physiol Biochem ; 209: 108525, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518396

RESUMO

Members of the CEP (C-terminally Encoded Peptide) gene family have been shown to be involved in various developmental processes and stress responses in plants. In order to understand the roles of CEP peptides in stress response, a comprehensive bioinformatics approach was employed to identify NtCEP genes in tobacco (Nicotiana tabacum L.) and to analyze their potential roles in stress responses. Totally 21 NtCEP proteins were identified and categorized into two subgroups based on their CEP domains. Expression changes of the NtCEP genes in response to various abiotic stresses were analyzed via qRT-PCR and the results showed that a number of NtCEPs were significant up-regulated under drought, salinity, or temperature stress conditions. Furthermore, application of synthesized peptides derived from NtCEP5, NtCEP13, NtCEP14, and NtCEP17 enhanced plant tolerance to different salt stress treatments. NtCEP5, NtCEP9 and NtCEP14, and NtCEP17 peptides were able to promote osmotic tolerance of tobacco plants. The results from this study suggest that NtCEP peptides may serve as important signaling molecules in tobacco's response to abiotic stresses.


Assuntos
Nicotiana , Proteínas de Plantas , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Estresse Salino , Peptídeos/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Filogenia
4.
Bioact Mater ; 36: 203-220, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38463553

RESUMO

Ulcerative colitis (UC) is characterized by chronic inflammatory processes of the intestinal tract of unknown origin. Current treatments lack understanding on how to effectively alleviate oxidative stress, relieve inflammation, as well as modulate gut microbiota for maintaining intestinal homeostasis synchronously. In this study, a novel drug delivery system based on a metal polyphenol network (MPN) was constructed via metal coordination between epigallocatechin gallate (EGCG) and Fe3+. Curcumin (Cur), an active polyphenolic compound, with distinguished anti-inflammatory activity was assembled and encapsulated into MPN to generate Cur-MPN. The obtained Cur-MPN could serve as a robust reactive oxygen species modulator by efficiently scavenging superoxide radical (O2•-) as well as hydroxyl radical (·OH). By hitchhiking yeast microcapsule (YM), Cur-MPN was then encapsulated into YM to obtain CM@YM. Our findings demonstrated that CM@YM was able to protect Cur-MPN to withstand the harsh gastrointestinal environment and enhance the targeting and retention abilities of the inflamed colon. When administered orally, CM@YM could alleviate DSS-induced colitis with protective and therapeutic effects by scavenging ROS, reducing pro-inflammatory cytokines, and regulating the polarization of macrophages to M1, thus restoring barrier function and maintaining intestinal homeostasis. Importantly, CM@YM also modulated the gut microbiome to a favorable state by improving bacterial diversity and transforming the compositional structure to an anti-inflammatory phenotype as well as increasing the content of short-chain fatty acids (SCFA) (such as acetic acid, propionic acid, and butyric acid). Collectively, with excellent biocompatibility, our findings indicate that synergistically regulating intestinal microenvironment will be a promising approach for UC.

5.
Front Chem ; 11: 1288418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901159

RESUMO

Introduction: Dopamine is one of the most significant neurotransmitters and plays an important role in the management of cognitive functions such as learning, memory, and behavior. The disorder of dopamine is associated with many major mental diseases. It is necessary to develop selective methods for the detection of dopamine. Methods: In this work, carbon dots (CDs) were synthesized by a solvothermal route using glutathione, L-histidine, and formamide as sources. Results: Under light irradiation, The CDs convert dissolved oxygen to singlet oxygen (1O2), which could oxidize TMB. When reduced dopamine was present, it suppressed the catalysis of CDs, then the absorption of the CDs-coupled TMB complex at 652 nm was diminished. Furthermore, it was revealed that the surface groups including hydroxyl, amino, carbonyl, and carboxyl groups of CDs were related to their light-responsive catalytic activity by surface modification. In the range of 0.5-15 µM, the CDs could afford a LOD of 0.25 µM for dopamine detection with fine linearity, also showing good selectivity. Discussion: The results from fetal bovine serum indicated the good applicability of the CDs in the determination of dopamine.

6.
Int J Bioprint ; 9(5): 774, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37555081

RESUMO

Millions of individuals across the world suffer from corneal stromal diseases that impair vision. Fortunately, three-dimensional (3D) bioprinting technology which has revolutionized the field of regenerative tissue engineering makes it feasible to create personalized corneas. In this study, an artificial cornea with a high degree of precision, smoothness, and programmable curvature was prepared by using digital light processing (DLP) 3D bioprinting in one piece with no support structure, and the construct was then confirmed by optical coherence tomography (OCT). On the basis of this approach, we developed a novel corneal decellularized extracellular matrix/gelatin methacryloyl (CECM-GelMA) bioink that can produce complex microenvironments with highly tunable mechanical properties while retaining high optical transmittance. Furthermore, the composite hydrogel was loaded with human corneal fibroblasts (hCFs), and in vitro experiments showed that the hydrogel maintained high cell viability and expressed core proteins. In vivo tests revealed that the hydrogel might promote epithelial regeneration, keep the matrix aligned, and restore clarity. This demonstrates how crucial a role CECM plays in establishing a favorable environment that encourages the transformation of cell function. Therefore, artificial corneas that can be rapidly customized have a huge potential in the development of in vitro corneal matrix analogs.

7.
ACS Nano ; 17(16): 15516-15528, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37548636

RESUMO

A high-efficiency drug screening method is urgently needed due to the expanding number of potential targets and the extremely long time required to assess them. To date, high throughput and high content have not been successfully combined in image-based drug screening, which is the main obstacle to improve the efficiency. Here, we establish a high-throughput and high-content drug screening method by preparing a superhydrophobic microwell array plate (SMAP) and combining it with protein-retention expansion microscopy (proExM). Primarily, we described a flexible method to prepare the SMAP based on photolithography. Cells were cultured in the SMAP and treated with different drugs using a microcolumn-microwell sandwiching technology. After drug treatment, proExM was applied to realize super-resolution imaging. As a demonstration, a 7 × 7 image array of microtubules was successfully collected within 3 h with 68 nm resolution using this method. Qualitative and quantitative analyses of microtubule and mitochondria morphological changes after drug treatment suggested that more details were revealed after applying proExM, demonstrating the successful combination of high throughput and high content.


Assuntos
Microscopia , Microtúbulos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala/métodos
8.
Anim Sci J ; 94(1): e13851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37437892

RESUMO

Lipopolysaccharide (LPS) reduces the reproductive performance of laying ducks, especially during the hot summer months. To study the underlying mechanisms, we investigated the effects of different LPS concentrations and heat on duck granulosa cell (GC) proliferation and steroid biosynthesis in vitro. We investigated GC proliferation, secretion, and activation of the MAPK pathway. The cell cycle results showed that LPS treatment alone did not significantly affect cell proliferation, whereas the mRNA expression levels of IGF2, IGFBP2, and CyclinD1 were downregulated and p27kip1 was significantly upregulated after 2000 ng/mL LPS treatment when compared to untreated cells. In steroid hormone synthesis, although LPS increased the expression of most steroid biosynthesis genes, it inhibited the expression of CYP11A1 at high LPS concentrations. High temperatures enhanced the inhibitory effect of LPS on the expression of proliferation-promoting genes. Heat significantly reduced CYP11A1 and CYP19A1 expression. In addition, the phosphorylation of P38 was significantly upregulated by high temperatures combined with LPS, whereas the phosphorylation of ERK1/2 and JNK was downregulated. The relative protein expression of Bax/BCL-2 was upregulated at high temperatures in combination with LPS. Heat treatment enhanced the inhibitory effects of LPS on the proliferation and hormone biosynthesis of duck GCs in vitro.


Assuntos
Patos , Lipopolissacarídeos , Animais , Patos/genética , Lipopolissacarídeos/farmacologia , Temperatura Alta , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Proliferação de Células , Esteroides , Hormônios
9.
J Exp Bot ; 74(17): 5140-5152, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37351601

RESUMO

Receptor-like kinases (RLKs) are the most important class of cell surface receptors, and play crucial roles in plant development and stress responses. However, few studies have been reported about the biofunctions of RLKs in leaf senescence. Here, we characterized a novel Arabidopsis RLK-encoding gene, SENESCENCE-RELATED RECEPTOR KINASE 1 (SENRK1), which was significantly down-regulated during leaf senescence. Notably, the loss-of-function senrk1 mutants displayed an early leaf senescence phenotype, while overexpression of SENRK1 significantly delayed leaf senescence, indicating that SENRK1 negatively regulates age-dependent leaf senescence in Arabidopsis. Furthermore, the senescence-promoting transcription factor WRKY53 repressed the expression of SENRK1. While the wrky53 mutant showed a delayed senescence phenotype as previously reported, the wrky53 senrk1-1 double mutant exhibited precocious leaf senescence, suggesting that SENRK1 functions downstream of WRKY53 in regulating age-dependent leaf senescence in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Arabidopsis/metabolismo , Senescência Vegetal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Lab Chip ; 23(9): 2154-2160, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37013801

RESUMO

Generally, the pattern formed by individual particles trapped inside a microfluidic chamber by a two-dimensional standing acoustic wave field has been considered only the result of the acoustic radiation force. Previous studies showed that particles can be trapped at the local minima and maxima of the first-order pressure and velocity fields. Thus, either a rectangular or a diamond pattern can be formed solely depending on the particle size, when the acoustic field is unchanged, and the material properties of the particles and the fluid are fixed. In this paper, we report about the co-existence of different patterns with particles of the same size. The actual shape of the patterns depends mainly on the ratio between particle diameter and wavelength. In addition, particles were found to be trapped at locations that coincide with the position of antinodes, even though the particles have a positive acoustic contrast factor. These phenomena imply that the trapping of individual particles cannot be described by the acoustic radiation force solely. Hence, further research is required, taking the viscous drag force caused by the fluid flow induced by the acoustic streaming effect into account.

11.
Mol Ther ; 31(5): 1383-1401, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36855303

RESUMO

Ulcerative colitis (UC) is a chronic or relapsing inflammatory disease with limited therapeutic outcomes. Pterostilbene (PSB) is a polyphenol-based anti-oxidant that has received extensive interest for its intrinsic anti-inflammatory and anti-oxidative activities. This work aims to develop a reactive oxygen species (ROS)-responsive, folic acid (FA)-functionalized nanoparticle (NP) for efficient PSB delivery to treat UC. The resulting PSB@NP-FA had a nano-scaled diameter of 231 nm and a spherical shape. With ROS-responsive release and ROS-scavenging properties, PSB@NP could effectively scavenge H2O2, thereby protecting cells from H2O2-induced oxidative damage. After FA modification, the resulting PSB@NP-FA could be internalized by RAW 264.7 and Colon-26 cells efficiently and preferentially localized to the inflamed colon. In dextran sulfate sodium (DSS)-induced colitis models, PSB@NP-FA showed a prominent ROS-scavenging capacity and anti-inflammatory activity, therefore relieving murine colitis effectively. Mechanism results suggested that PSB@NP-FA ameliorated colitis by regulating dendritic cells (DCs), promoting macrophage polarization, and regulating T cell infiltration. Both innate and adaptive immunity were involved. More importantly, the combination of the PSB and dexamethasone (DEX) enhanced the therapeutic efficacy of colitis. This ROS-responsive and ROS-scavenging nanocarrier represents an alternative therapeutic approach to UC. It can also be used as an enhancer for classic anti-inflammatory drugs.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/farmacologia , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Colite Ulcerativa/induzido quimicamente , Imunidade Adaptativa , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sulfato de Dextrana/efeitos adversos
12.
J Nanobiotechnology ; 21(1): 21, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658555

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic nonspecific disease with unknown etiology. Currently, the anti-inflammatory therapeutic approaches have achieved a certain extent of effects in terms of inflammation alleviation. Still, the final pathological outcome of intestinal fibrosis has not been effectively improved yet. RESULTS: In this study, dextran-coated cerium oxide (D-CeO2) nanozyme with superoxide dismutase (SOD) and catalase (CAT) activities was synthesized by chemical precipitation. Our results showed that D-CeO2 could efficiently scavenge reactive oxide species (ROS) as well as downregulate the pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α, and iNOS) to protect cells from H2O2-induced oxidative damage. Moreover, D-CeO2 could suppress the expression of fibrosis-related gene levels, such as α-SMA, and Collagen 1/3, demonstrating the anti-fibrotic effect. In both TBNS- and DSS-induced colitis models, oral administration of D-CeO2 in chitosan/alginate hydrogel alleviated intestinal inflammation, reduced colonic damage by scavenging ROS, and decreased inflammatory factor levels. Notably, our findings also suggested that D-CeO2 reduced fibrosis-related cytokine levels, predicting a contribution to alleviating colonic fibrosis. Meanwhile, D-CeO2 could also be employed as a CT contrast agent for noninvasive gastrointestinal tract (GIT) imaging. CONCLUSION: We introduced cerium oxide nanozyme as a novel therapeutic approach with computed tomography (CT)-guided anti-inflammatory and anti-fibrotic therapy for the management of IBD. Collectively, without appreciable systemic toxicity, D-CeO2 held the promise of integrated applications for diagnosis and therapy, pioneering the exploration of nanozymes with ROS scavenging capacity in the anti-fibrotic treatment of IBD.


Assuntos
Cério , Doenças Inflamatórias Intestinais , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Cério/farmacologia , Citocinas/metabolismo , Fibrose , Peróxido de Hidrogênio , Inflamação , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Doenças Inflamatórias Intestinais/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Tomografia , Tomografia Computadorizada por Raios X
14.
Front Plant Sci ; 13: 1000297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212358

RESUMO

Small secreted peptides (SSPs) are important signals for cell-to-cell communication in plant, involved in a variety of growth and developmental processes, as well as responses to stresses. While a large number of SSPs have been identified and characterized in various plant species, little is known about SSPs in wheat, one of the most important cereal crops. In this study, 4,981 putative SSPs were identified on the wheat genome, among which 1,790 TaSSPs were grouped into 38 known SSP families. The result also suggested that a large number of the putaitive wheat SSPs, Cys-rich peptides in particular, remained to be characterized. Several TaSSP genes were found to encode multiple SSP domains, including CLE, HEVEIN and HAIRPININ domains, and two potentially novel TaSSP family DYY and CRP8CI were identified manually among unpredicted TaSSPs. Analysis on the transcriptomic data showed that a great proportion of TaSSPs were expressed in response to abiotic stresses. Exogenous application of the TaCEPID peptide encoded by TraesCS1D02G130700 enhanced the tolerance of wheat plants to drought and salinity, suggesting porential roles of SSPs in regulating stress responses in wheat.

15.
Front Plant Sci ; 13: 941026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046590

RESUMO

NAC proteins constitute one of the largest transcription factor families and are involved in regulation of plant development and stress responses. Our previous transcriptome analyses of tobacco revealed a significant increase in the expression of NtNAC028 during leaf yellowing. In this study, we found that NtNAC028 was rapidly upregulated in response to high salinity, dehydration, and abscisic acid (ABA) stresses, suggesting a vital role of this gene in abiotic stress response. NtNAC028 loss-of-function tobacco plants generated via CRISPR-Cas9 showed delayed leaf senescence and increased tolerance to drought and salt stresses. Meanwhile NtNAC028 overexpression led to precocious leaf senescence and hypersensitivity to abiotic stresses in Arabidopsis, indicating that NtNAC028 functions as a positive regulator of natural leaf senescence and a negative regulator of stress tolerance. Furthermore, NtNAC028-overexpressing Arabidopsis plants showed lower antioxidant enzyme activities, higher reactive oxygen species (ROS), and H2O2 accumulation under high salinity, resulted in more severe oxidative damage after salt stress treatments. On the other hand, NtNAC028 mutation in tobacco resulted in upregulated expression of ROS-scavenging and abiotic stress-related genes, higher antioxidant enzyme activities, and enhanced tolerance against abiotic stresses, suggesting that NtNAC028 might act as a vital regulator for plant stress response likely by mediating ROS scavenging ability. Collectively, our results indicated that the NtNAC028 plays a key regulatory role in leaf senescence and response to multiple abiotic stresses.

16.
Anal Chem ; 94(37): 12781-12787, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36054869

RESUMO

Liquid crystal (LC)-based sensors have been extensively applied in the detection of chemical and biological events. However, the calculation of the optical images of the LC-based sensors is usually time-consuming and also might bring some errors due to the use of different judgment criteria by different users. In the present study, an automated calculation method for LC sensing images based on deep learning is provided. A convolutional network is trained with the prepared LC sensing images and their corresponding segmentation annotations to predict the positive responses. The ratio is calculated from the area of positive response to the total area selected by our image processing method. The robustness of the proposed algorithm is validated on both the test set and the label-free Cd2+ detection. The results show that the method based on deep learning can detect the positive response area in real time and the speed is much faster than the manual processing method. In addition, deep learning method can be directly applied to other label-free molecular detection assays.


Assuntos
Aprendizado Profundo , Cristais Líquidos , Algoritmos , Cádmio , Processamento de Imagem Assistida por Computador/métodos
17.
Lab Chip ; 22(15): 2886-2901, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35851398

RESUMO

Acoustic tweezers facilitate a noninvasive, contactless, and label-free method for the precise manipulation of micro objects, including biological cells. Although cells are exposed to mechanical and thermal stress, acoustic tweezers are usually considered as biocompatible. Here, we present a holistic experimental approach to reveal the correlation between acoustic fields, acoustophoretic motion and heating effects of particles induced by an acoustic tweezer setup. The system is based on surface acoustic waves and was characterized by applying laser Doppler vibrometry, astigmatism particle tracking velocimetry and luminescence lifetime imaging. In situ measurements with high spatial and temporal resolution reveal a three-dimensional particle patterning coinciding with the experimentally assisted numerical result of the acoustic radiation force distribution. In addition, a considerable and rapid heating up to 55 °C depending on specific parameters was observed. Although these temperatures may be harmful to living cells, counter-measures can be found as the time scales of patterning and heating are shown to be different.


Assuntos
Acústica , Calefação , Fenômenos Mecânicos , Movimento (Física) , Som
18.
Front Plant Sci ; 13: 909378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845701

RESUMO

Leaf senescence is a highly coordinated process and has a significant impact on agriculture. Plant peptides are known to act as important cell-to-cell communication signals that are involved in multiple biological processes such as development and stress responses. However, very limited number of peptides has been reported to be associated with leaf senescence. Here, we report the characterization of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 (IDL6) peptide as a regulator of leaf senescence. The expression of IDL6 was up-regulated in senescing leaves. Exogenous application of synthetic IDL6 peptides accelerated the process of leaf senescence. The idl6 mutant plants showed delayed natural leaf senescence as well as senescence included by darkness, indicating a regulatory role of IDL6 peptides in leaf senescence. The role of IDL6 as a positive regulator of leaf senescence was further supported by the results of overexpression analysis and complementation test. Transcriptome analysis revealed differential expression of phytohormone-responsive genes in idl6 mutant plants. Further analysis indicated that altered expression of IDL6 led to changes in leaf senescence phenotypes induced by ABA and ethylene treatments. The results from this study suggest that the IDL6 peptide positively regulates leaf senescence in Arabidopsis thaliana.

19.
Talanta ; 249: 123691, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35732104

RESUMO

The development of high-sensitive biomolecular detection system is of great significance for diseases early diagnosis. The novel optical sensor based on the polarization-sensitive absorption of graphene has a great potential in biological detection. However, the detection sensitivity of the device can hardly meet the needs of clinical analysis currently. This study applies sliver deposition signal amplification to the optical biomolecular detection device based on reduced graphene oxide for the sensitive immunoassay. In redox cycling enzymatic silver deposition reaction, the more alkaline phosphatase label bound on chip surface will cause a faster silver deposition rate. The specific antibody detection confirms that the sliver deposition can enhance the detection signal significantly. In cardiac biomarker Creatine Kinase-MB measurement, the minimum detection concentration is 0.1 ng/mL. To be more important, within the range from detection limit to 10 ng/mL, the signal intensity is highly correlated with target protein concentration, so the biomolecular detection device can meet clinical assay requirements. The signal-enhanced optical biomolecular detection device based on reduced graphene oxide shows excellent sensitivity and selectivity, and provides a new strategy for biomolecules detection, which can be applied in diseases accurate prediction and diagnosis.


Assuntos
Técnicas Biossensoriais , Grafite , Imunoensaio , Limite de Detecção , Prata
20.
Bioresour Technol ; 359: 127475, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35714782

RESUMO

Hydrothermal pretreatment with diluted acid or alkali can disrupt the compact structure of wheat straw at a moderate temperature for efficient enzymatic saccharification. However, the quantitative analysis between the physicochemical properties and enzymatic hydrolyzability of hydrothermal pretreated lignocellulose was rarely investigated, which hindered the development of model-based applications for process design and control. Herein, correlation analysis (CA) and principal component analysis (PCA) were conducted to elucidate the dominant factors affecting the enzymatic hydrolyzability and quantitative relationship between them. CA results suggested the major positive factor affecting carbohydrate conversion was cellulose content (r = 0.86). Through logarithmic processing and linear combination, these intercorrelated factors were successfully converted into two newly uncorrelated variables named the first principal component (PC1) and the second principal component (PC2). The initial hydrolysis rate and carbohydrate conversion can be well predicted by PC1 and PC2 scores through multiple linear regression with a high R-squared (0.91 and 0.80).


Assuntos
Lignina , Triticum , Carboidratos , Celulose/química , Hidrólise , Lignina/química , Temperatura , Triticum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...