Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Rheumatol ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361183

RESUMO

OBJECTIVE: Interleukin-23 (IL-23) is a crucial cytokine implicated in chronic inflammation and autoimmunity, associated with various diseases such as psoriasis, psoriatic arthritis, and systemic lupus erythematosus (SLE). This study aimed to create and characterize a transgenic mouse model overexpressing human IL-23A (TghIL-23A), providing a valuable tool for investigating the pathogenic role of human IL-23A and evaluating the efficacy of anti-human IL-23A therapeutics. METHODS: TghIL-23A mice were generated via microinjection of CBA × C57BL/6 zygotes with a fragment of the human IL23A gene, flanked by its 5'-regulatory sequences and the 3' untranslated region of human ß-globin. The TghIL-23A pathology was assessed through hematologic and biochemic analyses, cytokine and antinuclear antibody detection, and histopathologic examination of skin and renal tissues. The response to the anti-human IL-23A therapeutic agent guselkumab was evaluated in groups of eight mixed-sex mice receiving subcutaneous treatment twice weekly for 10 weeks using clinical, biomarker, and histopathologic readouts. RESULTS: TghIL-23A mice exhibited interactions between human IL-23A and mouse IL-23/IL-12p40 and developed a chronic multiorgan autoimmune disease marked by proteinuria, anti-double-stranded DNA antibodies, severe inflammatory lesions in the skin, and milder phenotypes in the kidneys and lungs. The TghIL-23A pathologic features exhibited significant similarities to those observed in human patients with SLE, and they were reversed following guselkumab treatment. CONCLUSION: We have generated and characterized a novel genetic mouse model of SLE, providing proof-of-concept for the etiopathogenic role of human IL-23A. This new model has a normal life span and integrates several characteristics of the human disease's complexity and chronicity, making it an attractive preclinical tool for studying IL-23-dependent pathogenic mechanisms and assessing the efficacy of anti-human IL-23A or modeled disease-related therapeutics.

2.
Angew Chem Int Ed Engl ; 63(14): e202319157, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339863

RESUMO

Fibroblasts are key regulators of inflammation, fibrosis, and cancer. Targeting their activation in these complex diseases has emerged as a novel strategy to restore tissue homeostasis. Here, we present a multidisciplinary lead discovery approach to identify and optimize small molecule inhibitors of pathogenic fibroblast activation. The study encompasses medicinal chemistry, molecular phenotyping assays, chemoproteomics, bulk RNA-sequencing analysis, target validation experiments, and chemical absorption, distribution, metabolism, excretion and toxicity (ADMET)/pharmacokinetic (PK)/in vivo evaluation. The parallel synthesis employed for the production of the new benzamide derivatives enabled us to a) pinpoint key structural elements of the scaffold that provide potent fibroblast-deactivating effects in cells, b) discriminate atoms or groups that favor or disfavor a desirable ADMET profile, and c) identify metabolic "hot spots". Furthermore, we report the discovery of the first-in-class inhibitor leads for hypoxia up-regulated protein 1 (HYOU1), a member of the heat shock protein 70 (HSP70) family often associated with cellular stress responses, particularly under hypoxic conditions. Targeting HYOU1 may therefore represent a potentially novel strategy to modulate fibroblast activation and treat chronic inflammatory and fibrotic disorders.


Assuntos
Fibroblastos , Inflamação , Humanos , Fibroblastos/metabolismo , Inflamação/metabolismo , Hipóxia/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo
3.
Mech Ageing Dev ; 214: 111856, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558168

RESUMO

We had shown that administration of the senolytic Dasatinib abolishes arthritis in the human TNF transgenic mouse model of chronic destructive arthritis when given in combination with a sub-therapeutic dose of the anti-TNF mAb Infliximab (1 mg/kg). Herein, we found that while the number of senescent chondrocytes (GL13+/Ki67-), assessed according to guideline algorithmic approaches, was not affected by either Dasatinib or sub-therapeutic Infliximab monotherapies, their combination reduced senescent chondrocytes by 50 %, which was comparable to levels observed with therapeutic Infliximab monotherapy (10 mg/kg). This combination therapy also reduced the expression of multiple factors of senescence-associated secretory phenotype in arthritic joints. Studies to elucidate the interplay of inflammation and senescence may help in optimizing treatment strategies also for age-related pathologies characterized by chronic low-grade joint inflammation.


Assuntos
Artrite , Senescência Celular , Humanos , Camundongos , Animais , Dasatinibe/farmacologia , Infliximab/farmacologia , Inibidores do Fator de Necrose Tumoral/farmacologia , Inflamação , Camundongos Transgênicos
4.
Cancers (Basel) ; 15(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37568820

RESUMO

Receptor activator of nuclear factor-κB ligand (RANKL) is critically involved in mammary gland pathophysiology, while its pharmaceutical inhibition is being currently investigated in breast cancer. Herein, we investigated whether the overexpression of human RANKL in transgenic mice affects hormone-induced mammary carcinogenesis, and evaluated the efficacy of anti-RANKL treatments, such as OPG-Fc targeting both human and mouse RANKL or Denosumab against human RANKL. We established novel MPA/DMBA-driven mammary carcinogenesis models in TgRANKL mice that express both human and mouse RANKL, as well as in humanized humTgRANKL mice expressing only human RANKL, and compared them to MPA/DMBA-treated wild-type (WT) mice. Our results show that TgRANKL and WT mice have similar levels of susceptibility to mammary carcinogenesis, while OPG-Fc treatment restored mammary ductal density, and prevented ductal branching and the formation of neoplastic foci in both genotypes. humTgRANKL mice also developed MPA/DMBA-induced tumors with similar incidence and burden to those of WT and TgRANKL mice. The prophylactic treatment of humTgRANKL mice with Denosumab significantly prevented the rate of appearance of mammary tumors from 86.7% to 15.4% and the early stages of carcinogenesis, whereas therapeutic treatment did not lead to any significant attenuation of tumor incidence or tumor burden compared to control mice, suggesting the importance of RANKL primarily in the initial stages of tumorigenesis. Overall, we provide unique genetic tools for investigating the involvement of RANKL in breast carcinogenesis, and allow the preclinical evaluation of novel therapeutics that target hormone-related breast cancers.

5.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37014697

RESUMO

Synovial fibroblasts (SFs) are key pathogenic drivers in rheumatoid arthritis (RA). Their in vivo activation by TNF is sufficient to orchestrate full arthritic pathogenesis in animal models, and TNF blockade proved efficacious for a high percentage of patients with RA albeit coinducing rare but serious side effects. Aiming to find new potent therapeutics, we applied the L1000CDS2 search engine, to repurpose drugs that could reverse the pathogenic expression signature of arthritogenic human TNF-transgenic (hTNFtg) SFs. We identified a neuroleptic drug, namely amisulpride, which reduced SFs' inflammatory potential while decreasing the clinical score of hTNFtg polyarthritis. Notably, we found that amisulpride function was neither through its known targets dopamine receptors D2 and D3 and serotonin receptor 7 nor through TNF-TNF receptor I binding inhibition. Through a click chemistry approach, potentially novel targets of amisulpride were identified, which were further validated to repress hTNFtg SFs' inflammatory potential ex vivo (Ascc3 and Sec62), while phosphoproteomics analysis revealed that treatment altered important fibroblast activation pathways, such as adhesion. Thus, amisulpride could prove beneficial to patients experiencing RA and the often-accompanying comorbid dysthymia, reducing SF pathogenicity along with its antidepressive activity, serving further as a "lead" compound for the development of novel therapeutics against fibroblast activation.


Assuntos
Antipsicóticos , Artrite Reumatoide , Animais , Humanos , Membrana Sinovial/metabolismo , Antipsicóticos/farmacologia , Amissulprida/farmacologia , Reposicionamento de Medicamentos , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , DNA Helicases/metabolismo
6.
Sci Rep ; 12(1): 18189, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307458

RESUMO

Children with chronic inflammation are often treated with glucocorticoids (GCs) and many of them experience growth retardation. It is poorly understood how GCs interact with inflammatory cytokines causing growth failure as earlier experimental studies have been performed in healthy animals. To address this gap of knowledge, we used a transgenic mouse model where human TNF is overexpressed (huTNFTg) leading to chronic polyarthritis starting from the first week of age. Our results showed that femur bone length and growth plate height were significantly decreased in huTNFTg mice compared to wild type animals. In the growth plates of huTNFTg mice, increased apoptosis, suppressed Indian hedgehog, decreased hypertrophy, and disorganized chondrocyte columns were observed. Interestingly, the GC dexamethasone further impaired bone growth, accelerated chondrocyte apoptosis and reduced the number of chondrocyte columns in huTNFTg mice. We conclude that TNF and dexamethasone separately suppress chondrogenesis and bone growth when studied in an animal model of chronic inflammation. Our data give a possible mechanistic explanation to the commonly observed growth retardation in children with chronic inflammatory diseases treated with GCs.


Assuntos
Condrogênese , Proteínas Hedgehog , Criança , Camundongos , Humanos , Animais , Proteínas Hedgehog/genética , Desenvolvimento Ósseo , Lâmina de Crescimento , Condrócitos , Glucocorticoides/farmacologia , Camundongos Transgênicos , Inflamação , Dexametasona/farmacologia , Transtornos do Crescimento
7.
J Neuroinflammation ; 18(1): 222, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565380

RESUMO

BACKGROUND: During inflammatory demyelination, TNF receptor 1 (TNFR1) mediates detrimental proinflammatory effects of soluble TNF (solTNF), whereas TNFR2 mediates beneficial effects of transmembrane TNF (tmTNF) through oligodendroglia, microglia, and possibly other cell types. This model supports the use of selective inhibitors of solTNF/TNFR1 as anti-inflammatory drugs for central nervous system (CNS) diseases. A potential obstacle is the neuroprotective effect of solTNF pretreatment described in cultured neurons, but the relevance in vivo is unknown. METHODS: To address this question, we generated mice with neuron-specific depletion of TNFR1, TNFR2, or inhibitor of NF-κB kinase subunit ß (IKKß), a main downstream mediator of TNFR signaling, and applied experimental models of inflammatory demyelination and acute and preconditioning glutamate excitotoxicity. We also investigated the molecular and cellular requirements of solTNF neuroprotection by generating astrocyte-neuron co-cultures with different combinations of wild-type (WT) and TNF and TNFR knockout cells and measuring N-methyl-D-aspartate (NMDA) excitotoxicity in vitro. RESULTS: Neither neuronal TNFR1 nor TNFR2 protected mice during inflammatory demyelination. In fact, both neuronal TNFR1 and neuronal IKKß promoted microglial responses and tissue injury, and TNFR1 was further required for oligodendrocyte loss and axonal damage in cuprizone-induced demyelination. In contrast, neuronal TNFR2 increased preconditioning protection in a kainic acid (KA) excitotoxicity model in mice and limited hippocampal neuron death. The protective effects of neuronal TNFR2 observed in vivo were further investigated in vitro. As previously described, pretreatment of astrocyte-neuron co-cultures with solTNF (and therefore TNFR1) protected them against NMDA excitotoxicity. However, protection was dependent on astrocyte, not neuronal TNFR1, on astrocyte tmTNF-neuronal TNFR2 interactions, and was reproduced by a TNFR2 agonist. CONCLUSIONS: These results demonstrate that neuronal TNF receptors perform fundamentally different roles in CNS pathology in vivo, with neuronal TNFR1 and IKKß promoting microglial inflammation and neurotoxicity in demyelination, and neuronal TNFR2 mediating neuroprotection in excitotoxicity. They also reveal that previously described neuroprotective effects of solTNF against glutamate excitotoxicity in vitro are indirect and mediated via astrocyte tmTNF-neuron TNFR2 interactions. These results consolidate the concept that selective inhibition of solTNF/TNFR1 with maintenance of TNFR2 function would have combined anti-inflammatory and neuroprotective properties required for safe treatment of CNS diseases.


Assuntos
Quinase I-kappa B/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Neurônios/patologia , Neuroproteção/fisiologia , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/patologia
8.
J Transl Med ; 19(1): 165, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892739

RESUMO

BACKGROUND: New medications for Rheumatoid Arthritis (RA) have emerged in the last decades, including Disease Modifying Antirheumatic Drugs (DMARDs) and biologics. However, there is no known cure, since a significant proportion of patients remain or become non-responders to current therapies. The development of new mode-of-action treatment schemes involving combination therapies could prove successful for the treatment of a greater number of RA patients. METHODS: We investigated the effect of the Tyrosine Kinase inhibitors (TKIs) dasatinib and bosutinib, on the human TNF-dependent Tg197 arthritis mouse model. The inhibitors were administered either as a monotherapy or in combination with a subtherapeutic dose of anti-hTNF biologics and their therapeutic effect was assessed clinically, histopathologically as well as via gene expression analysis and was compared to that of an efficient TNF monotherapy. RESULTS: Dasatinib and, to a lesser extent, bosutinib inhibited the production of TNF and proinflammatory chemokines from arthritogenic synovial fibroblasts. Dasatinib, but not bosutinib, also ameliorated significantly and in a dose-dependent manner both the clinical and histopathological signs of Tg197 arthritis. Combination of dasatinib with a subtherapeutic dose of anti-hTNF biologic agents, resulted in a synergistic inhibitory effect abolishing all arthritis symptoms. Gene expression analysis of whole joint tissue of Tg197 mice revealed that the combination of dasatinib with a low subtherapeutic dose of Infliximab most efficiently restores the pathogenic gene expression profile to that of the healthy state compared to either treatment administered as a monotherapy. CONCLUSION: Our findings show that dasatinib exhibits a therapeutic effect in TNF-driven arthritis and can act in synergy with a subtherapeutic anti-hTNF dose to effectively treat the clinical and histopathological signs of the pathology. The combination of dasatinib and anti-hTNF exhibits a distinct mode of action in restoring the arthritogenic gene signature to that of a healthy profile. Potential clinical applications of combination therapies with kinase inhibitors and anti-TNF agents may provide an interesting alternative to high-dose anti-hTNF monotherapy and increase the number of patients responding to treatment.


Assuntos
Antirreumáticos , Artrite Reumatoide , Dasatinibe , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Animais , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Dasatinibe/uso terapêutico , Humanos , Infliximab/uso terapêutico , Camundongos
9.
Ann Rheum Dis ; 80(6): 714-726, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33602797

RESUMO

Animal models for inflammatory arthritides such as rheumatoid arthritis (RA) and psoriatic arthritis are widely accepted and frequently used to identify pathological mechanisms and validate novel therapeutic strategies. Unfortunately, many publications reporting on these animal studies lack detailed description and appropriate assessment of the distinct histopathological features of arthritis: joint inflammation, cartilage damage and bone erosion. Therefore, the European consortium BeTheCure, consisting of 38 academic and industrial partners from 15 countries, set as goal to standardise the histological evaluation of joint sections from animal models of inflammatory arthritis. The consensual approach of a task force including 16 academic and industrial scientists as well as laboratory technicians has resulted in the development of the Standardised Microscopic Arthritis Scoring of Histological sections ('SMASH') recommendations for a standardised processing and microscopic scoring of the characteristic histopathological features of arthritis, exemplified by four different rodent models for arthritis: murine collagen-induced arthritis, collagen-antibody-induced arthritis, human tumour necrosis factor transgenic Tg197 mice and rat pristane-induced arthritis, applicable to any other inflammatory arthritis model. Through standardisation, the SMASH recommendations are designed to improve and maximise the information derived from in vivo arthritis experiments and to promote reproducibility and transparent reporting on such studies. In this manuscript, we will discuss and provide recommendations for analysis of histological joint sections: identification of the regions of interest, sample preparation, staining procedures and quantitative scoring methods. In conclusion, awareness of the different features of the arthritis pathology in animal models of inflammatory arthritis is of utmost importance for reliable research outcome, and the standardised histological processing and scoring methods in these SMASH recommendations will help increase uniformity and reproducibility in preclinical research on inflammatory arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Reprodutibilidade dos Testes
10.
Arthritis Res Ther ; 22(1): 232, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023659

RESUMO

BACKGROUND: The transmembrane-TNF transgenic mouse, TgA86, has been shown to develop spontaneously peripheral arthritis with signs of axial involvement. To assess similarity to human spondyloarthritis, we performed detailed characterization of the axial, peripheral, and comorbid pathologies of this model. METHODS: TgA86 bone pathologies were assessed at different ages using CT imaging of the spine, tail vertebrae, and hind limbs and characterized in detail by histopathological and immunohistochemical analysis. Cardiac function was examined by echocardiography and electrocardiography and bone structural parameters by µCT analysis. The response of TgA86 mice to either early or late anti-TNF treatment was evaluated clinically, histopathologically, and by µCT analysis. RESULTS: TgA86 mice developed with 100% penetrance spontaneous axial and peripheral pathology which progressed with time and manifested as reduced body weight and body length, kyphosis, tail bendings, as well as swollen and distorted hind joints. Whole-body CT analysis at advanced ages revealed bone erosions of sacral and caudal vertebrae as well as of sacroiliac joints and hind limbs and, also, new ectopic bone formation and eventually vertebral fusion. The pathology of these mice highly resembled that of SpA patients, as it evolved through an early inflammatory phase, evident as enthesitis and synovitis in the affected joints, characterized by mesenchymal cell accumulation, and neutrophilic infiltration. Subsequently, regression of inflammation was accompanied by ectopic bone formation, leading to ankylosis. In addition, both systemic bone loss and comorbid heart valve pathology were evident. Importantly, early anti-TNF treatment, similar to clinical treatment protocols, significantly reduced the inflammatory phase of both the axial and peripheral pathology of TgA86 mice. CONCLUSIONS: The TgA86 mice develop a spontaneous peripheral and axial biphasic pathology accompanied by comorbid heart valvular dysfunction and osteoporosis, overall reproducing the progression of pathognomonic features of human spondyloarthritis. Therefore, the TgA86 mouse represents a valuable model for deciphering the role of transmembrane TNF in the pathogenic mechanisms of spondyloarthritis and for assessing the efficacy of human therapeutics targeting different phases of the disease.


Assuntos
Osteogênese , Espondilartrite , Animais , Humanos , Inflamação , Imageamento por Ressonância Magnética , Camundongos , Articulação Sacroilíaca , Espondilartrite/diagnóstico por imagem , Inibidores do Fator de Necrose Tumoral
11.
PLoS Comput Biol ; 15(5): e1006933, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31071076

RESUMO

Anti-TNF agents have been in the first line of treatment of various inflammatory diseases such as Rheumatoid Arthritis and Crohn's Disease, with a number of different biologics being currently in use. A detailed analysis of their effect at transcriptome level has nevertheless been lacking. We herein present a concise analysis of an extended transcriptomics profiling of four different anti-TNF biologics upon treatment of the established hTNFTg (Tg197) mouse model of spontaneous inflammatory polyarthritis. We implement a series of computational analyses that include clustering of differentially expressed genes, functional analysis and random forest classification. Taking advantage of our detailed sample structure, we devise metrics of treatment efficiency that take into account changes in gene expression compared to both the healthy and the diseased state. Our results suggest considerable variability in the capacity of different biologics to modulate gene expression that can be attributed to treatment-specific functional pathways and differential preferences to restore over- or under-expressed genes. Early intervention appears to manage inflammation in a more efficient way but is accompanied by increased effects on a number of genes that are seemingly unrelated to the disease. Administration at an early stage is also lacking in capacity to restore healthy expression levels of under-expressed genes. We record quantifiable differences among anti-TNF biologics in their efficiency to modulate over-expressed genes related to immune and inflammatory pathways. More importantly, we find a subset of the tested substances to have quantitative advantages in addressing deregulation of under-expressed genes involved in pathways related to known RA comorbidities. Our study shows the potential of transcriptomic analyses to identify comprehensive and distinct treatment-specific gene signatures combining disease-related and unrelated genes and proposes a generalized framework for the assessment of drug efficacy, the search of biosimilars and the evaluation of the efficacy of TNF small molecule inhibitors.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite/genética , Perfilação da Expressão Gênica/métodos , Adalimumab/farmacologia , Animais , Artrite/tratamento farmacológico , Medicamentos Biossimilares , Certolizumab Pegol/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/imunologia , Infliximab/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transcriptoma/genética , Resultado do Tratamento , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
12.
JCI Insight ; 3(7)2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29618659

RESUMO

Mesenchymal TNF signaling is etiopathogenic for inflammatory diseases such as rheumatoid arthritis and spondyloarthritis (SpA). The role of Tnfr1 in arthritis has been documented; however, Tnfr2 functions are unknown. Here, we investigate the mesenchymal-specific role of Tnfr2 in the TnfΔARE mouse model of SpA in arthritis and heart valve stenosis comorbidity by cell-specific, Col6a1-cre-driven gene targeting. We find that TNF/Tnfr2 signaling in resident synovial fibroblasts (SFs) and valvular interstitial cells (VICs) is detrimental for both pathologies, pointing to common cellular mechanisms. In contrast, systemic Tnfr2 provides protective signaling, since its complete deletion leads to severe deterioration of both pathologies. SFs and VICs lacking Tnfr2 fail to acquire pathogenic activated phenotypes and display increased expression of antiinflammatory cytokines associated with decreased Akt signaling. Comparative RNA sequencing experiments showed that the majority of the deregulated pathways in TnfΔARE mesenchymal-origin SFs and VICs, including proliferation, inflammation, migration, and disease-specific genes, are regulated by Tnfr2; thus, in its absence, they are maintained in a quiescent nonpathogenic state. Our data indicate a pleiotropy of Tnfr2 functions, with mesenchymal Tnfr2 driving cell activation and arthritis/valve stenosis pathogenesis only in the presence of systemic Tnfr2, whereas nonmesenchymal Tnfr2 overcomes this function, providing protective signals and, thus, containing both pathologies.


Assuntos
Estenose da Valva Aórtica/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/imunologia , Espondilartrite/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibroblastos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Espondilartrite/complicações , Espondilartrite/genética , Espondilartrite/patologia , Membrana Sinovial/citologia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Ann Rheum Dis ; 77(6): 926-934, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29475857

RESUMO

OBJECTIVES: Patients with rheumatoid arthritis and spondyloarthritisshow higher mortality rates, mainly caused by cardiac comorbidities. The TghuTNF (Tg197) arthritis model develops tumour necrosis factor (TNF)-driven and mesenchymalsynovial fibroblast (SF)-dependent polyarthritis. Here, we investigate whether this model develops, similarly to human patients, comorbid heart pathology and explore cellular and molecular mechanisms linking arthritis to cardiac comorbidities. METHODS: Histopathological analysis and echocardiographic evaluation of cardiac function were performed in the Tg197 model. Valve interstitial cells (VICs) were targeted by mice carrying the ColVI-Cretransgene. Tg197 ColVI-Cre Tnfr1fl/fl and Tg197 ColVI-Cre Tnfr1cneo/cneo mutant mice were used to explore the role of mesenchymal TNF signalling in the development of heart valve disease. Pathogenic VICs and SFs were further analysed by comparative RNA-sequencing analysis. RESULTS: Tg197 mice develop left-sided heart valve disease, characterised by valvular fibrosis with minimal signs of inflammation. Thickened valve areas consist almost entirely of hyperproliferative ColVI-expressing mesenchymal VICs. Development of pathology results in valve stenosis and left ventricular dysfunction, accompanied by arrhythmic episodes and, occasionally, valvular regurgitation. TNF dependency of the pathology was indicated by disease modulation following pharmacological inhibition or mesenchymal-specific genetic ablation or activation of TNF/TNFR1 signalling. Tg197-derived VICs exhibited an activated phenotype ex vivo, reminiscent of the activated pathogenic phenotype of Tg197-derived SFs. Significant functional similarities between SFs and VICs were revealed by RNA-seq analysis, demonstrating common cellular mechanisms underlying TNF-mediated arthritides and cardiac comorbidities. CONCLUSIONS: Comorbidheart valve disease and chronic polyarthritis are efficiently modelled in the Tg197 arthritis model and share common TNF/TNFR1-mediated, mesenchymal cell-specific aetiopathogenic mechanisms.


Assuntos
Artrite Experimental/imunologia , Doenças das Valvas Cardíacas/imunologia , Células-Tronco Mesenquimais/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Valva Aórtica/patologia , Doença Crônica , Feminino , Fibrose , Doenças das Valvas Cardíacas/complicações , Doenças das Valvas Cardíacas/patologia , Masculino , Camundongos Mutantes , Valva Mitral/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Disfunção Ventricular Esquerda/etiologia
14.
J Control Release ; 242: 16-24, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27639683

RESUMO

We have developed a composite hydrogel for improved topical delivery of the poorly soluble drug Tacrolimus (TAC) to psoriasis lesions. TAC is efficiently solubilized in methoxy poly- (ethylene glycol) hexyl substituted poly-(lactic acid) (mPEGhexPLA) based nanocarriers. For convenient and patient-friendly topical administration, TAC loaded polymeric nanocarriers were incorporated in a Carbopol® based hydrogel, to yield a composite hydrogel formulation (TAC composite hydrogel). TAC composite hydrogel was designed to have superior pharmaceutical formulation properties, delivery efficiency and local bioavailability, compared to currently available paraffin-based TAC ointments. Composite hydrogel formulations had good local tolerance and showed no signs of immediate toxicity after repeated topical administration in healthy mice. Skin delivery of TAC composite hydrogel in an imiquimod-induced psoriasis mouse model was found to be twice as high as for the commercial formulation Protopic™, used as benchmark. TAC composite hydrogel showed significant improvement in the in vivo and histopathological features of the imiquimod-induced psoriasis model.


Assuntos
Sistemas de Liberação de Medicamentos , Imunossupressores/administração & dosagem , Psoríase/tratamento farmacológico , Tacrolimo/administração & dosagem , Administração Cutânea , Aminoquinolinas , Animais , Disponibilidade Biológica , Química Farmacêutica , Modelos Animais de Doenças , Portadores de Fármacos/química , Hidrogéis , Imiquimode , Imunossupressores/farmacocinética , Imunossupressores/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Polímeros/química , Pele/metabolismo , Absorção Cutânea , Solubilidade , Tacrolimo/farmacocinética , Tacrolimo/farmacologia
15.
J Transl Med ; 12: 285, 2014 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-25344414

RESUMO

BACKGROUND: Novel molecules that specifically target human TNFα in rheumatoid arthritis pose problems for preclinical assessment of efficacy. In this study collagen antibody-induced arthritis (CAIA) has been induced in human TNFα transgenic mice to provide a novel model that has been optimised for the evaluation of molecules targeting human TNFα. METHODS: Tg1278TNFko mice lack murine TNFα and are heterozygous for multiple copies of the human TNFα transgene that is expressed under normal physiological control. To establish CAIA, a collagen II monoclonal antibody cocktail (CAb) at 2, 4 or 8 mg was injected i.p. on Day 0 followed by a lipopolysaccharide (LPS) boost (10 or 100 µg) i.p. on Day 1 or Day 4. Animals were assessed for arthritis symptoms using a clinical score, cytokine levels (human TNFα, IL-1ß and IL-6) in sera and joints, and histopathology. The dependence of the model on human TNFα was determined by dosing animals with etanercept. RESULTS: Tg1278TNFko animals treated with 2, 4 or 8 mg CAb on Day 0, with 100 µg LPS on Day 4, had more severe arthritis and earlier symptoms than wild type animals at all doses of CAb tested. Subsequently it was found that the transgenic model did not require LPS at all for arthritis development but a lower dose of LPS (10 µg) was found necessary for reproducible and robust disease (close to 100% incidence, well-synchronised, with high arthritis scores). Furthermore the LPS challenge could be brought forward to Day 1 so that its' actions to facilitate disease could be separated temporally from the arthritis phase (beginning about Day 4). Etanercept, administered immediately after the serum spike of cytokines associated with LPS had subsided, was able to dose-dependently inhibit arthritis development and this was associated with a marked protection of the joints histologically on Day 14. Etanercept was also able to reverse the signs of arthritis when given therapeutically allowing animals to be matched for disease burden before dosing begins. CONCLUSIONS: The features of CAIA in Tg1278TNFko animals make the model well-suited to testing the next generation of therapeutics that will target human TNFα in rheumatoid arthritis.


Assuntos
Anticorpos/administração & dosagem , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Colágeno Tipo II/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Artrite Reumatoide/metabolismo , Etanercepte/uso terapêutico , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos
16.
Ann Rheum Dis ; 71(10): 1716-23, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22562984

RESUMO

OBJECTIVE: To identify novel microRNA (miR) associations in synovial fibroblasts (SF), by performing miR expression profiling on cells isolated from the human tumour necrosis factor (TNF) transgenic mouse model (TghuTNF, Tg197) and patients biopsies. METHODS: miR expression in SF from TghuTNF and wild-type (WT) control mice were determined by miR deep sequencing (miR-seq) and the arthritic profile was established by pairwise comparisons. Quantitative PCR analysis was utilised for profile validation, miR and gene quantitation in patient SF. Dysregulated miR target genes and pathways were predicted via bioinformatic algorithms and validated using gain-of-function coupled with reporter assay experiments. RESULTS: miR-seq demonstrated that TghuTNF-SF exhibit a distinct pathogenic profile with 22 significantly upregulated and 30 significantly downregulated miR. Validation assays confirmed the dysregulation of miR-223, miR-146a and miR-155 previously associated with human rheumatoid arthritis (RA) pathology, as well as that of miR-221/222 and miR-323-3p. Notably, the latter were also found significantly upregulated in patient RA SF, suggesting for the first time their association with RA pathology. Bioinformatic analysis suggested Wnt/cadherin signalling as a putative pathway target. miR-323-3p overexpression was shown to enhance Wnt pathway activation and decrease the levels of its predicted target ß-transducin repeat containing, an inhibitor of ß-catenin. CONCLUSIONS: Using miR-seq-based profiling in SF from the TghuTNF mouse model and validations in RA patient biopsies, the authors identified miR-221/222 and miR-323-3p as novel dysregulated miR in RA SF. Furthermore, the authors show that miR-323-3p is a positive regulator of WNT/cadherin signalling in RA SF suggesting its potential pathogenic involvement and future use as a therapeutic target in RA.


Assuntos
Artrite Reumatoide/genética , MicroRNAs/genética , Transcriptoma , Algoritmos , Animais , Biologia Computacional , Modelos Animais de Doenças , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
17.
Eur J Immunol ; 42(2): 403-12, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22105853

RESUMO

The TNF/TNFR system exerts multiple proinflammatory and immunosuppressive functions in the pathogenesis of chronic inflammation and autoimmunity. In EAE, the experimental model of Multiple Sclerosis (MS), genetic ablation of TNFR2, results in exacerbated immune reactivity and chronic disease course. The underlying mechanism driving this immunosuppressive function of TNFR2 remains unclear. We show here that chronic exacerbated EAE in TNFR2 KO mice is associated with increased Th17-cell responses and reduced numbers of Foxp3(+) Treg cells both in the spinal cord and peripheral lymphoid organs. Treg cells from TNFR2-deficient animals developing EAE show decreased proliferative and suppressive functions, both ex vivo and in vivo, and appear responsible for the exacerbated non-remitting disease, as evidenced by phenotypic rescue following adoptive transfer of Treg cells from WT but not TNFR2(-/-) donors. Reciprocal BM transplantation experiments between WT and TNFR2-deficient mice demonstrated that the capacity of TNFR2 to support Treg-cell expansion and function during EAE is non-intrinsic to Treg or other haematopoietic cells but requires expression of TNFR2 in radiation-resistant cells of the host. These results reveal a previously unsuspected role for non-haematopoietic TNFR2 in modulating Treg-cell expansion and immune suppression during development of autoimmunity and suggest that a similar mechanism may affect chronicity and relapses characterizing human autoimmune disease, including MS.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Transferência Adotiva , Animais , Transplante de Medula Óssea , Processos de Crescimento Celular/genética , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/fisiopatologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Terapia de Imunossupressão , Camundongos , Camundongos Knockout , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Medula Espinal/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th17/imunologia , Células Th17/patologia , Quimeras de Transplante
18.
J Clin Invest ; 115(9): 2454-61, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16110329

RESUMO

A major stumbling block for research on and treatment of type 1 diabetes is the inability to directly, but noninvasively, visualize the lymphocytic/inflammatory lesions in the pancreatic islets. One potential approach to surmounting this impediment is to exploit MRI of magnetic nanoparticles (MNP) to visualize changes in the microvasculature that invariably accompany inflammation. MNP-MRI did indeed detect vascular leakage in association with insulitis in murine models of type 1 diabetes, permitting noninvasive visualization of the inflammatory lesions in vivo in real time. We demonstrate, in proof-of-principle experiments, that this strategy allows one to predict, within 3 days of completing treatment with an anti-CD3 monoclonal antibody, which NOD mice with recent-onset diabetes are responding to therapy and may eventually be cured. Importantly, an essentially identical MNP-MRI strategy has previously been used with great success to image lymph node metastases in prostate cancer patients. This success strongly argues for rapid translation of these preclinical observations to prediction and/or stratification of type 1 diabetes and treatment of individuals with the disease; this would provide a crucially needed early predictor of response to therapy.


Assuntos
Diabetes Mellitus Tipo 1 , Inflamação , Imageamento por Ressonância Magnética/métodos , Nanoestruturas , Pâncreas , Animais , Complexo CD3/imunologia , Ciclofosfamida/toxicidade , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/uso terapêutico , Inflamação/etiologia , Inflamação/imunologia , Inflamação/patologia , Magnetismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/patologia
19.
Proc Natl Acad Sci U S A ; 101(34): 12634-9, 2004 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-15304647

RESUMO

Type 1 diabetes is the clinical manifestation of aberrant leukocytic infiltration of the pancreatic islets; it is usually diagnosed only very late in disease progression, after the critical autoimmune phenomena have mostly played out. A noninvasive means of directly monitoring the evolution of islet infiltrates would have important research and clinical applications. We have exploited fluorescence and MRI of long-circulating magnetofluorescent nanoparticles to visualize micro-vascular leakage, as an indicator of inflammation, in pancreata of mouse models of type 1 diabetes ex vivo or in vivo. We could detect the onset and evolution of insulitis in vivo and in real time, permitting us to study the natural history of diabetes in individual animals.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Inflamação/metabolismo , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Animais , Modelos Animais de Doenças , Feminino , Ilhotas Pancreáticas/irrigação sanguínea , Macrófagos/metabolismo , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Microcirculação , Microscopia de Fluorescência/métodos
20.
Mol Immunol ; 40(5): 279-86, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12943800

RESUMO

Recombinant IL-2 (rIL-2) produced in prokaryotes, is widely used in lieu of native IL-2, which is secreted by T cells, to assess the functional profile of this cytokine. We provide evidence that a naturally occurring species of post-translationally modified IL-2 (moIL-2) exhibits enhanced bioactivity compared to rIL-2, as tested at the biochemical and functional level. We show that moIL-2 has high binding affinity for the IL-2 receptor (IL-2R), induces the immediate expression of the IL-2R alpha chain and rapidly activates downstream signaling molecules. Finally, in contrast to rIL-2, moIL-2 can promote the antigen-independent proliferation of resting lymphocytes. Collectively, our data demonstrate that native moIL-2 is functionally distinct from rIL-2, suggesting the existence of diverse IL-2 variants which may be critical for the shaping of the immune response.


Assuntos
Interleucina-2/metabolismo , Proteínas Recombinantes/metabolismo , Divisão Celular/fisiologia , Humanos , Interleucina-2/genética , Proteínas Recombinantes/genética , Linfócitos T/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...