Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Front Neurol ; 14: 1284029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965165

RESUMO

Introduction: This study compares the balance control and cognitive responses of subjects with bilateral vestibulopathy (BVP) to those of astronauts immediately after they return from long-duration spaceflight on board the International Space Station. Methods: Twenty-eight astronauts and thirty subjects with BVP performed five tests using the same procedures: sit-to-stand, walk-and-turn, tandem walk, duration judgment, and reaction time. Results: Compared to the astronauts' preflight responses, the BVP subjects' responses were impaired in all five tests. However, the BVP subjects' performance during the walk-and-turn and the tandem walk tests were comparable to the astronauts' performance on the day they returned from space. Moreover, the BVP subjects' time perception and reaction time were comparable to those of the astronauts during spaceflight. The BVP subjects performed the sit-to-stand test at a level that fell between the astronauts' performance on the day of landing and 1 day later. Discussion: These results indicate that the alterations in dynamic balance control, time perception, and reaction time that astronauts experience after spaceflight are likely driven by central vestibular adaptations. Vestibular and somatosensory training in orbit and vestibular rehabilitation after spaceflight could be effective countermeasures for mitigating these post-flight performance decrements.

2.
Nat Commun ; 14(1): 6311, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813884

RESUMO

Astronauts in microgravity experience multi-system deconditioning, impacting their inflight efficiency and inducing dysfunctions upon return to Earth gravity. To fill the sex gap of knowledge in the health impact of spaceflights, we simulate microgravity with a 5-day dry immersion in 18 healthy women (ClinicalTrials.gov Identifier: NCT05043974). Here we show that dry immersion rapidly induces a sedentarily-like metabolism shift mimicking the beginning of a metabolic syndrome with a drop in glucose tolerance, an increase in the atherogenic index of plasma, and an impaired lipid profile. Bone remodeling markers suggest a decreased bone formation coupled with an increased bone resorption. Fluid shifts and muscular unloading participate to a marked cardiovascular and sensorimotor deconditioning with decreased orthostatic tolerance, aerobic capacity, and postural balance. Collected datasets provide a comprehensive multi-systemic assessment of dry immersion effects in women and pave the way for future sex-based evaluations of countermeasures.


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Feminino , Descondicionamento Cardiovascular/fisiologia , Imersão , Ausência de Peso/efeitos adversos , Simulação de Ausência de Peso
3.
Cancers (Basel) ; 15(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37296867

RESUMO

Insomnia symptoms are common among patients with breast cancer (BC; 20-70%) and are predictors of cancer progression and quality of life. Studies have highlighted sleep structure modifications, including increased awakenings and reduced sleep efficiency and total sleep time. Such modifications may result from circadian rhythm alterations consistently reported in this pathology and known as carcinogenic factors, including lower melatonin levels, a flattened diurnal cortisol pattern, and lower rest-activity rhythm amplitude and robustness. Cognitive behavioral therapy and physical activity are the most commonly used non-pharmacological interventions to counter insomnia difficulties in patients with BC. However, their effects on sleep structure remain unclear. Moreover, such approaches may be difficult to implement shortly after chemotherapy. Innovatively, vestibular stimulation would be particularly suited to tackling insomnia symptoms. Indeed, recent reports have shown that vestibular stimulation could resynchronize circadian rhythms and improve deep sleep in healthy volunteers. Moreover, vestibular dysfunction has been reported following chemotherapy. This perspective paper aims to support the evidence of using galvanic vestibular stimulation to resynchronize circadian rhythms and reduce insomnia symptoms in patients with BC, with beneficial effects on quality of life and, potentially, survival.

4.
Front Physiol ; 14: 1141078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007995

RESUMO

We report a study on astronauts aimed at characterizing duration judgment before, during, and after long-duration stays on board the International Space Station. Ten astronauts and a control group of 15 healthy (non-astronaut) participants performed a duration reproduction task and a duration production task using a visual target duration ranging from 2 to 38 s. Participants also performed a reaction time test for assessing attention. Compared to control participants and preflight responses, the astronauts' reaction time increased during spaceflight. Also, during spaceflight, time intervals were under-produced while counting aloud and under-reproduced when there was a concurrent reading task. We hypothesize that time perception during spaceflight is altered by two mechanisms: (a) an acceleration of the internal clock through the changes in vestibular inputs in microgravity, and (b) difficulties in attention and working memory when a concurrent reading task is present. Prolonged isolation in confined areas, weightlessness, stress related to workload, and high-performance expectations could account for these cognitive impairments.

6.
NPJ Microgravity ; 9(1): 6, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658133

RESUMO

We perceive the environment through an elaborate mental representation based on a constant integration of sensory inputs, knowledge, and expectations. Previous studies of astronauts on board the International Space Station have shown that the mental representation of space, such as the perception of object size, distance, and depth, is altered in orbit. Because the mental representations of space and time have some overlap in neural networks, we hypothesized that perception of time would also be affected by spaceflight. Ten astronauts were tested before, during, and after a 6-8-month spaceflight. Temporal tasks included judging when one minute had passed and how long it had been since the start of the workday, lunch, docking of a vehicle, and a spacewalk. Compared to pre-flight estimates, there is a relative overestimation for the 1-min interval during the flight and a relative underestimation of intervals of hours in duration. However, the astronauts quite accurately estimated the number of days since vehicle dockings and spacewalks. Prolonged isolation in confined areas, stress related to workload, and high-performance expectations are potential factors contributing to altered time perception of daily events. However, reduced vestibular stimulations and slower motions in weightlessness, as well as constant references to their timeline and work schedule could also account for the change in the estimation of time by the astronauts in space.

8.
Exp Physiol ; 106(7): 1549-1558, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866619

RESUMO

NEW FINDINGS: What is the central question of this study? What is the effect of an exercise countermeasure on microgravity-induced change in cerebral blood flow? What is the main finding and its importance? Jump exercise training as a countermeasure did not modify the heterogeneous cerebral blood flow response to head-down bed rest, suggesting that this method is effective in preventing cardiovascular system deconditioning but is not good for cerebral haemodynamics. ABSTRACT: This study aimed to examine the effect of an exercise countermeasure on cerebral blood flow (CBF) response to long-term -6° head-down bed rest (HDBR) in all cerebral arteries and veins. Twenty male volunteers were exposed to HDBR for 60 days with (training group, n = 10) or without (control group, n = 10) jump exercise training as a countermeasure to spaceflight. The blood flow in the neck conduit arteries (internal carotid and vertebral artery; ICA and VA) and veins (internal jugular and vertebral veins; IJV and VV) was measured, using ultrasonography before (baseline) HDBR, on the 30th and 57th day of HDBR. Long-term HDBR causes a heterogeneous CBF response between the anterior and the posterior brain or between arteries and veins. Long-term HDBR decreased anterior cerebral arterial and venous blood flow, while posterior cerebral arterial and venous blood flows were well maintained. However, exercise jump training did not change each arterial and venous CBF responses to HDBR (control vs. training; ICA, P = 0.643; VA, P = 0.542; external carotid artery, P = 0.644; IJV, P = 0.980; VV, P = 0.999). These findings suggest that jump exercise training did not modify the heterogeneous CBF response to long-term HDBR.


Assuntos
Repouso em Cama , Circulação Cerebrovascular , Artérias Cerebrais/fisiologia , Circulação Cerebrovascular/fisiologia , Exercício Físico/fisiologia , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Hemodinâmica , Humanos , Masculino
9.
Chronobiol Int ; 38(1): 90-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33317340

RESUMO

Animal and human studies demonstrate anatomical and functional links between the vestibular nuclei and the circadian timing system. This promotes the hypothesis of a circadian rhythm of vestibular function. The objective of this study was to evaluate the vestibular function through the vestibulo-ocular reflex using a rotatory chair at different times of the day to assess circadian rhythmicity of vestibular function. Two identical studies evaluating temporal variation of the vestibulo-ocular reflex (VOR) were performed, the first in young adults (age: 22.4 ± 1.5 y), and the second in older adults (70.7 ± 4.7 y). The slow phase velocity and time constant of the VOR were evaluated in six separate test sessions, i.e., 02:00, 06:00, 10:00, 14:00, 18:00, and 22:00 h. In both studies, markers of circadian rhythmicity (temperature, fatigue, and sleepiness) displayed expected usual temporal variation. In young adults, the time constant of the VOR showed variation throughout the day (p < .005), being maximum 12:25 h (06:00 h test session) before the acrophase of temperature circadian rhythm. In older adults, the slow phase velocity and time constant also displayed temporal variation (p < .05). Maximum values were recorded at 10:35 h (06:00 h test session) before the acrophase of temperature circadian rhythm. The present study demonstrates that vestibular function is not constant throughout the day. The implication of the temporal variation in vestibular system in equilibrium potentially exposes the elderly, in particular, to differential risk during the 24 h of losing balance and falling.


Assuntos
Ritmo Circadiano , Vestíbulo do Labirinto , Adulto , Idoso , Animais , Humanos , Reflexo Vestíbulo-Ocular , Rotação , Adulto Jovem
10.
Chronobiol Int ; 37(8): 1244-1251, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845722

RESUMO

The vestibular system is responsible for sensing every angular and linear head acceleration, mainly during periods of motor activity. Previous animal and human experiments have shown biological rhythm disruptions in small rodents exposed to a hypergravity environment, but also in patients with bilateral vestibular loss compared to a control population. This raised the hypothesis of the vestibular afferent influence on circadian rhythm synchronization. The present study aimed to test the impact of vestibular stimulation induced by a rotatory chair on the rest/activity rhythm in human subjects. Thirty-four healthy adults underwent both sham (SHAM) and vestibular stimulation (STIM) sessions scheduled at 18:00 h. An off-vertical axis rotation on a rotatory chair was used to ecologically stimulate the vestibular system by head accelerations. The rest/activity rhythm was continuously registered by actigraphy. The recording started one week before the first session (BASELINE), continued in the week between the two sessions and one week after the second session. Vestibular stimulation caused a significant decrease in the average activity level in the evening following the vestibular stimulation. A significant phase advance in the rest/activity rhythm occurred two days after the 18:00 h vestibular stimulation session. Moreover, the level of motion sickness symptoms increased significantly after vestibular stimulation. The present study confirms previous results on the effect of vestibular stimulation and the role of vestibular afferents on circadian biological rhythmicity. Our results support the hypothesis of the implication of vestibular afferents as non-photic stimuli acting on circadian rhythms.


Assuntos
Ritmo Circadiano , Descanso , Actigrafia , Adulto , Animais , Cabeça , Humanos , Rotação
11.
Front Neural Circuits ; 14: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581724

RESUMO

As we move through an environment the positions of surrounding objects relative to our body constantly change. Maintaining orientation requires spatial updating, the continuous monitoring of self-motion cues to update external locations. This ability critically depends on the integration of visual, proprioceptive, kinesthetic, and vestibular information. During weightlessness gravity no longer acts as an essential reference, creating a discrepancy between vestibular, visual and sensorimotor signals. Here, we explore the effects of repeated bouts of microgravity and hypergravity on spatial updating performance during parabolic flight. Ten healthy participants (four women, six men) took part in a parabolic flight campaign that comprised a total of 31 parabolas. Each parabola created about 20-25 s of 0 g, preceded and followed by about 20 s of hypergravity (1.8 g). Participants performed a visual-spatial updating task in seated position during 15 parabolas. The task included two updating conditions simulating virtual forward movements of different lengths (short and long), and a static condition with no movement that served as a control condition. Two trials were performed during each phase of the parabola, i.e., at 1 g before the start of the parabola, at 1.8 g during the acceleration phase of the parabola, and during 0 g. Our data demonstrate that 0 g and 1.8 g impaired pointing performance for long updating trials as indicated by increased variability of pointing errors compared to 1 g. In contrast, we found no support for any changes for short updating and static conditions, suggesting that a certain degree of task complexity is required to affect pointing errors. These findings are important for operational requirements during spaceflight because spatial updating is pivotal for navigation when vision is poor or unreliable and objects go out of sight, for example during extravehicular activities in space or the exploration of unfamiliar environments. Future studies should compare the effects on spatial updating during seated and free-floating conditions, and determine at which g-threshold decrements in spatial updating performance emerge.


Assuntos
Sensação Gravitacional/fisiologia , Hipergravidade , Orientação Espacial/fisiologia , Voo Espacial/métodos , Navegação Espacial/fisiologia , Ausência de Peso , Adulto , Feminino , Gravitação , Humanos , Masculino , Pessoa de Meia-Idade , Voo Espacial/psicologia
12.
Sci Rep ; 10(1): 9216, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514078

RESUMO

Input from the light/dark (LD) cycle constitutes the primary synchronizing stimulus for the suprachiasmatic nucleus (SCN) circadian clock. However, the SCN can also be synchronized by non-photic inputs. Here, we hypothesized that the vestibular system, which detects head motion and orientation relative to gravity, may provide sensory inputs to synchronize circadian rhythmicity. We investigated the resynchronization of core temperature (Tc) circadian rhythm to a six-hour phase advance of the LD cycle (LD + 6) using hypergravity (2 G) as a vestibular stimulation in control and bilateral vestibular loss (BVL) rats. Three conditions were tested: an LD + 6 exposure alone, a series of seven 2 G pulses without LD + 6, and a series of seven one-hour 2 G pulses (once a day) following LD + 6. First, following LD + 6, sham rats exposed to 2 G pulses resynchronized earlier than BVL rats (p = 0.01), and earlier than sham rats exposed to LD + 6 alone (p = 0.002). Each 2 G pulse caused an acute drop of Tc in sham rats (-2.8 ± 0.3 °C; p < 0.001), while BVL rats remained unaffected. This confirms that the vestibular system influences chronobiological regulation and supports the hypothesis that vestibular input, like physical activity, should be considered as a potent time cue for biological rhythm synchronization, acting in synergy with the visual system.


Assuntos
Ritmo Circadiano/fisiologia , Hipergravidade , Animais , Locomoção , Masculino , Fotoperíodo , Ratos , Ratos Long-Evans , Temperatura
13.
Aerosp Med Hum Perform ; 91(4): 326-331, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32493554

RESUMO

BACKGROUND: Aerobatic flight is a challenge for the vestibular system, which is likely to lead to adaptive changes in the vestibular responses of pilots. We investigated whether aerobatic pilots, as individuals who experience intense vestibular stimulation, present modifications of the vestibular-ocular reflex, motion sickness susceptibility and intensity, visual vertical estimation, and visual dependence as compared to normal volunteers.METHODS: To evaluate vestibulo-ocular reflexes, eye movements were recorded with videonystagmography while subjects were rotated on a rotatory chair with the axis of rotation being vertical (canal-ocular reflex) or inclined to 17° (otolith-ocular reflex). Motion sickness was evaluated after the rotatory test using the Graybiel diagnostic criteria. General motion sickness susceptibility and visual field dependence were also evaluated.RESULTS: Averaged data did not show significant difference in canal-ocular reflex and otolith ocular-reflex between groups. However, a significant asymmetry in otolith-driven ocular responses was found in pilots (CW 0.50 ± 1.21° · s-1 vs. CCW 1.59 ± 1.12° · s-1), though visual vertical estimation was not altered in pilots and both groups were found field independent. Pilots were generally less susceptible to motion sickness (MSSQ scores: 2.52 ± 5.59 vs. 13.5 ± 11.36) and less affected by the nauseogenic stimulation (Graybiel diagnostic criteria 3.36 ± 3.81 vs. 8.39 ± 7.01).DISCUSSION: We did not observe the expected habituation in the group of aerobatic pilots. However, there was a significant asymmetry in the otolith-driven ocular responses in pilots, but not in the controls, which may result from the asymmetry in piloting protocols.Kuldavletova O, Tanguy S, Denise P, Quarck G. Vestibulo-ocular responses, visual field dependence, and motion sickness in aerobatic pilots. Aerosp Med Hum Perform. 2020; 91(4):326-331.


Assuntos
Medicina Aeroespacial , Habituação Psicofisiológica , Enjoo devido ao Movimento/fisiopatologia , Pilotos , Reflexo Vestíbulo-Ocular/fisiologia , Campos Visuais/fisiologia , Adolescente , Adulto , Estudos de Casos e Controles , Medições dos Movimentos Oculares , Feminino , Humanos , Masculino , Testes de Função Vestibular , Adulto Jovem
14.
Exp Physiol ; 105(1): 44-52, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31691384

RESUMO

NEW FINDINGS: What is the central question of this study? A heterogeneous cerebral blood flow (CBF) response in the cerebral arteries has been demonstrated in several physiological conditions, and it might be attributable to different physiological properties. However, the whole cerebral haemodynamic response to weightlessness remains unknown. What is the main finding and its importance? Long-term head-down bed rest caused a heterogeneous CBF response between the anterior and posterior cerebral arteries and between the cerebral arteries and veins. Especially, in contrast to the anterior cerebral circulation, the posterior arterial and venous CBFs were well maintained throughout weightlessness. ABSTRACT: In this study, we investigated the whole cerebral haemodynamic response to long-term head-down bed rest (HDBR). We hypothesized that long-term exposure to weightlessness influences cerebral blood flow (CBF) or CBF distribution among cerebral arteries and veins because of the different physiological roles of each cerebral vessel. To test this hypothesis, 10 male volunteers were exposed to -6 deg HDBR for 60 days. Blood flows in the internal carotid artery, external carotid artery and vertebral artery or internal jugular vein and vertebral vein were measured using ultrasonography before and on days 30 and 57 of the HDBR. The internal carotid artery blood flow was reduced on day 30 (P = 0.019) and had returned to the baseline level by day 57. In contrast, the vertebral artery blood flow remained unaltered throughout the HDBR (P = 0.626). The internal jugular vein blood flow was reduced on day 30 (P = 0.009), whereas the vertebral vein blood flow remained unaltered (P = 0.397). These findings suggest that long-term HDBR causes a heterogeneous CBF response between the anterior and posterior cerebral circulation in the both arteries and veins. The posterior arterial and venous CBFs were well maintained throughout HDBR, and these CBF responses to HDBR were different from the anterior cerebral circulation.


Assuntos
Repouso em Cama , Circulação Cerebrovascular , Decúbito Inclinado com Rebaixamento da Cabeça , Adulto , Artéria Carótida Externa/fisiologia , Artéria Carótida Interna/fisiologia , Voluntários Saudáveis , Hemodinâmica , Humanos , Masculino , Fluxo Sanguíneo Regional , Ultrassonografia , Artéria Vertebral/fisiologia , Simulação de Ausência de Peso , Adulto Jovem
15.
Front Syst Neurosci ; 13: 57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695599

RESUMO

[This corrects the article DOI: 10.3389/fnsys.2019.00014.].

16.
Front Syst Neurosci ; 13: 14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31040773

RESUMO

Galvanic vestibular stimulation (GVS) is a non-invasive method used to stimulate the vestibular system. The vestibular system includes the sensors, neural pathways, vestibular nuclei and the cortical areas receiving integrated vestibular inputs. In addition to its role in postural control or gaze stabilization, the vestibular system is involved in some cognitive functions and in emotion processing. Several studies have revealed a modulating effect of vestibular stimulation on mood state, emotional control, and anxiety level. Nevertheless, GVS is known to induce motion sickness symptoms such as nausea. The aim of the present study was to evaluate the tolerability and efficacy of a GVS protocol to be used potentially as a treatment for anxiety, and also to test the impact of stimulation parameters (duration) on anxiety. Twenty-two students underwent three stimulation conditions: (1) a sham session (no stimulation); (2) a single-duration session (38 min of GVS); and (3) a double-duration session (76 min of GVS). Before and after each stimulation, participants completed a Graybiel Scale form for motion sickness symptoms evaluation and a visual analog scale form for anxiety. We observed a significant diminution of anxiety level after a 38-min session of GVS, while a low level of motion sickness was only found following a 76-min session of GVS. Our preliminary study confirms the feasibility of using GVS to modulate anxiety and corroborates the involvement of the vestibular system in the emotional process.

17.
J Appl Physiol (1985) ; 125(2): 634-641, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29745800

RESUMO

The aim of the present study was to assess carotid baroreflex (CBR) function during acute changes in otolithic activity in humans. To address this question, we designed a set of experiments to identify the modulatory effects of microgravity on CBR function at a tilt angle of -2°, which was identified to minimize changes in central blood volume during parabolic flight. During parabolic flight at 0 and 1 g, CBR function curves were modeled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid pulse trains of neck pressure and neck suction ranging from +40 to -80 Torr; CBR control of HR (carotid-HR) and MAP (carotid-MAP) function curves, respectively. The maximal gain of both carotid-HR and carotid-MAP baroreflex function curves were augmented during microgravity compared with 1 g (carotid-HR, -0.53 to -0.80 beats·min-1·mmHg-1, P < 0.05; carotid-MAP, -0.24 to -0.30 mmHg/mmHg, P < 0.05). These findings suggest that parabolic flight-induced acute change of otolithic activity may modify CBR function and identifies that the vestibular system contributes to blood pressure regulation under fluctuations in gravitational forces. NEW & NOTEWORTHY The effect of acute changes in vestibular activity on arterial baroreflex function remains unclear. In the present study, we assessed carotid baroreflex function without changes in central blood volume during parabolic flight, which causes acute changes in otolithic activity. The sensitivity of both carotid heart rate and carotid mean arterial pressure baroreflex function was augmented in microgravity compared with 1 g, suggesting that the vestibular system contributes to blood pressure regulation in humans on Earth.


Assuntos
Barorreflexo/fisiologia , Artérias Carótidas/fisiologia , Seio Carotídeo/fisiologia , Adulto , Pressão Arterial/fisiologia , Volume Sanguíneo/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Ausência de Peso , Adulto Jovem
18.
J Appl Physiol (1985) ; 125(2): 353-361, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722618

RESUMO

Among possible causes of visual impairment or headache experienced by astronauts in microgravity or postflight and that hamper their performance, elevated intracranial pressure (ICP) has been invoked but never measured for lack of noninvasive methods. The goal of this work was to test two noninvasive methods of ICP monitoring using in-ear detectors of ICP-dependent auditory responses, acoustic and electric, in acute microgravity afforded by parabolic flights. The devices detecting these responses were handheld tablets routinely used in otolaryngology for hearing diagnosis, which were customized for ICP extraction and serviceable by unskilled operators. These methods had been previously validated against invasive ICP measurements in neurosurgery patients. The two methods concurred in their estimation of ICP changes with microgravity, i.e., 11.0 ± 7.7 mmHg for the acoustic method ( n = 7 subjects with valid results out of 30, auditory responses being masked by excessive in-flight noise in 23 subjects) and 11.3 ± 10.6 mmHg for the electric method ( n = 10 subjects with valid results out of 10 tested despite the in-flight noise). These results agree with recent publications using invasive access to cerebrospinal fluid in parabolic flights and suggest that acute microgravity has a moderate average effect on ICP, similar to body tilt from upright to supine, yet with some subjects undergoing large effects whereas others seem immune. The electric in-ear method would be suitable for ICP monitoring in circumstances and with subjects such that invasive measurements are excluded. NEW & NOTEWORTHY In-ear detectors of intracranial pressure-dependent auditory responses allow intracranial pressure to be monitored noninvasively during acute microgravity. The average pressure increase during 20-s long sessions in microgravity is 11 mmHg, comparable with an effect of body tilt. However, intersubject variability is large, with subjects who repeatedly experience from nothing to twice the average effect. A systematic in-flight use would allow the relationship between space adaptation syndrome and ICP to be established or dismissed.


Assuntos
Orelha/fisiologia , Pressão Intracraniana/fisiologia , Monitorização Fisiológica/métodos , Adulto , Astronautas , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Humanos , Pessoa de Meia-Idade , Postura/fisiologia , Voo Espacial/métodos , Ausência de Peso , Adulto Jovem
19.
J Appl Physiol (1985) ; 124(3): 769-779, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212669

RESUMO

To understand the impact of physical deconditioning with head-down tilt bed rest (HDBR) on the malleability of sympathetic discharge patterns, we studied 1) baseline integrated muscle sympathetic nerve activity (MSNA; microneurography) from 13 female participants in the WISE-2005 60-day HDBR study (retrospective analysis), 2) integrated MSNA and multiunit action potential (AP) analysis in 13 male participants performed on data collected at baseline and during physiological stress imposed by end-inspiratory apnea in a new 60-day HDBR study, and 3) a repeatability study (control; n = 6, retrospective analysis, 4 wk between tests). Neither baseline integrated burst frequency nor incidence were altered with HDBR (both P > 0.35). However, baseline integrated burst latency increased in both HDBR studies (male: 1.35 ± 0.02 to 1.39 ± 0.02 s, P < 0.01; female: 1.23 ± 0.02 to 1.29 ± 0.02 s, P < 0.01), whereas controls exhibited no change across two visits (1.25 ± 0.02 to 1.25 ± 0.02 s, group-by-time interaction, P = 0.02). With the exception of increased AP latency ( P = 0.03), male baseline AP data did not change with HDBR (all P > 0.19). The change in AP frequency on going from baseline to apnea (∆94 ± 25 to ∆317 ± 55 AP/min, P < 0.01) and the number of active sympathetic clusters per burst (∆0 ± 0.2 to ∆1 ± 0.2 clusters/burst, P = 0.02) were greater post- compared with pre-HDBR. The change in total clusters with apnea was ∆0 ± 0.5 clusters pre- and ∆2 ± 0.7 clusters post-HDBR ( P = 0.07). These data indicate that 60-day HDBR modified discharge characteristics in baseline burst latency and sympathetic neural recruitment during apneic stress. NEW & NOTEWORTHY Long-duration bed rest did not modify baseline sympathetic burst frequency in male and female participants, but examination of additional features of the multiunit signal provided novel evidence to suggest augmented synaptic delays or processing times at baseline for all sympathetic action potentials. Furthermore, long-duration bed rest increased reflex-sympathetic arousal to apneic stress in male participants primarily by mechanisms involving an augmented firing rate of action potential clusters active at baseline.


Assuntos
Repouso em Cama/efeitos adversos , Decúbito Inclinado com Rebaixamento da Cabeça/efeitos adversos , Sistema Nervoso Simpático/fisiologia , Potenciais de Ação , Apneia/fisiopatologia , Barorreflexo , Feminino , Hemodinâmica , Humanos , Masculino
20.
Anaesth Crit Care Pain Med ; 37(2): 161-166, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28882740

RESUMO

BACKGROUND: Sleep deprivation has been associated with an increased incidence of medical errors and can jeopardise patients' safety during medical crisis management. The aim of the study was to assess the effect of sleep deprivation on the management of simulated anaesthesia crisis by residents in anaesthesiology. METHODS: A randomised, comparative, monocentric crossover study involving 48 residents in anaesthesia was performed on a high fidelity patient simulator. Each resident was evaluated in a sleep-deprived state (deprived group, after a night shift duty) and control state (control group, after a night of sleep). Performance was assessed through points obtained during crisis scenario 1 (oesophageal intubation followed by anaphylactic shock) and scenario 2 (anaesthesia-related bronchospasm followed by ventricular tachycardia). Sleep periods were recorded by actigraphy. Two independent observers assessed the performances. The primary endpoint of the study was the score obtained for each scenario. RESULTS: Resident's crisis management performance is associated with sleep deprivation (scenario 1: control=39 [33-42] points vs. deprived=26 [19-40] points, P=0.02; scenario 2: control=21 [17-24] vs. deprived=14 [12-19], P=0.01). The main errors observed were: error in drug administration and dose, delay in identification of hypotension, and missing communication with the surgical team about situation. CONCLUSIONS: The present study showed that sleep deprivation is associated with impairment of performance to manage crisis situations by residents in anaesthesia.


Assuntos
Anestesiologistas , Anestesiologia/educação , Internato e Residência , Privação do Sono/psicologia , Transtornos do Sono do Ritmo Circadiano/psicologia , Adulto , Anafilaxia/terapia , Anestesia/efeitos adversos , Espasmo Brônquico/terapia , Competência Clínica , Estudos Cross-Over , Serviços Médicos de Emergência , Feminino , Humanos , Hipotensão/diagnóstico , Intubação Intratraqueal , Masculino , Erros Médicos , Simulação de Paciente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...