Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Biosci ; 37(2): 396-403, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38186254

RESUMO

OBJECTIVE: Monofluoroacetate (MFA) is a potent toxin that blocks ATP production via the Krebs cycle and causes acute toxicity in ruminants consuming MFA-containing plants. The rumen bacterium, Cloacibacillus porcorum strain MFA1 belongs to the phylum Synergistota and can produce fluoride and acetate from MFA as the end-products of dehalorespiration. The aim of this study was to identify the genomic basis for the metabolism of MFA by this bacterium. METHODS: A draft genome sequence for C. porcorum strain MFA1 was assembled and quantitative transcriptomic analysis was performed thus highlighting a candidate operon encoding four proteins that are responsible for the carbon-fluorine bond cleavage. Comparative genome analysis of this operon was undertaken with three other species of closely related Synergistota bacteria. RESULTS: Two of the genes in this operon are related to the substrate-binding components of the glycine reductase protein B (GrdB) complex. Glycine shares a similar structure to MFA suggesting a role for these proteins in binding MFA. The remaining two genes in the operon, an antiporter family protein and an oxidoreductase belonging to the radical S-adenosyl methionine superfamily, are hypothesised to transport and activate the GrdB-like protein respectively. Similar operons were identified in a small number of other Synergistota bacteria including type strains of Cloacibacillus porcorum, C. evryensis, and Pyramidobacter piscolens, suggesting lateral transfer of the operon as these genera belong to separate families. We confirmed that all three species can degrade MFA, however, substrate degradation in P. piscolens was notably reduced compared to Cloacibacillus isolates possibly reflecting the loss of the oxidoreductase and antiporter in the P. piscolens operon. CONCLUSION: Identification of this unusual anaerobic fluoroacetate metabolism extends the known substrates for dehalorespiration and indicates the potential for substrate plasticity in amino acid-reducing enzymes to include xenobiotics.

2.
PLoS One ; 18(9): e0291243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37703250

RESUMO

Nitrogen use efficiency is an important index in ruminants and can be indirectly evaluated through the N isotopic discrimination between the animal and its diet (Δ15Nanimal-diet). The concentration and source of N may determine both the extent of the N isotopic discrimination in bacteria and N use efficiency. We hypothesised that the uptake and release of ammonia by rumen bacteria will affect the natural 15N enrichment of the bacterial biomass over their substrates (Δ15Nbacteria-substrate) and thereby further impacting Δ15Nanimal-diet. To test this hypothesis, two independent in vitro experiments were conducted using two contrasting N sources (organic vs inorganic) at different levels either in pure rumen bacteria culture incubations (Experiment #1) or in mixed rumen cultures (Experiment #2). In Experiment #1, tryptone casein or ammonium chloride were tested at low (1 mM N) and high (11.5 mM N) concentrations on three rumen bacterial strains (Fibrobacter succinogenes, Eubacterium limosum and Xylanibacter ruminicola) incubated in triplicate in anaerobic batch monocultures during 48h. In Experiment #2 mixed rumen cultures were incubated during 120 h with peptone or ammonium chloride at five different levels of N (1.5, 3, 4.5, 6 and 12-mM). In experiment #1, Δ15Nbacteria-substrate was lowest when the ammonia-consumer bacterium Fibrobacter succinogenes was grown on ammonium chloride, and highest when the proteolytic bacterial strain Xylanibacter ruminicola was grown on tryptone. In experiment #2, Δ15Nbacteria-substrate was lower with inorganic (ammonium chloride) vs organic (peptone) N source. A strong negative correlation between Δ15Nbacteria-substrate and Rikenellaceae_RC9_gut_group, a potential fibrolytic rumen bacterium, was detected. Together, our results showed that Δ15Nbacteria-substrate may change according to the balance between synthesis of microbial protein from ammonia versus non-ammonia N sources and confirm the key role of rumen bacteria as modulators of Δ15Nanimal-diet.


Assuntos
Peptonas , Rúmen , Animais , Isótopos de Nitrogênio , Cloreto de Amônio , Bactérias , Nitrogênio , Amônia , Bacteroides
3.
Animal ; 17(8): 100895, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37515965

RESUMO

Ruminants are able to produce large quantities of saliva which enter into the rumen and salivary components exert different physiological functions. Although previous research has indicated that salivary immunoglobulins can partially modulate the rumen microbial activity, the role of the salivary components other than ions on the rumen microbial ecosystem has not been thoroughly investigated in ruminants. To investigate this modulatory activity, a total of 16 semi-continuous in vitro cultures with oats hay and concentrate were used to incubate rumen fluid from four donor goats with autoclaved saliva (AUT) as negative control, saliva from the same rumen fluid donor (OWN) as positive control, and either goat (GOAT) or sheep (SHEEP) saliva as experimental interventions. Fermentation was monitored throughout 7 days of incubation and the microbiome and metabolome were analysed at the end of this incubation by Next-Generation sequencing and liquid chromatography coupled with mass spectrometry, respectively. Characterisation of the proteome and metabolome of the different salivas used for the incubation showed a high inter-animal variability in terms of metabolites and proteins, including immunoglobulins. Incubation with AUT saliva promoted lower fermentative activity in terms of gas production (-9.4%) and highly divergent prokaryotic community in comparison with other treatments (OWN, GOAT and SHEEP) suggesting a modulatory effect derived from the presence of bioactive salivary components. Microbial alpha-diversity at amplicon sequence variant (ASV) level was unaffected by treatment. However, some differences were found in the microbial communities across treatments, which were mostly caused by a greater abundance of Proteobacteria and Rikenellacea in the AUT treatment and lower of Prevotellaceae. These bacteria, which are key in the rumen metabolism, had greater abundances in GOAT and SHEEP treatments. Incubation with GOAT saliva led to a lower protozoal concentration and propionate molar proportion indicating a capacity to modulate the rumen microbial ecosystem. The metabolomics analysis showed that the AUT samples were clustered apart from the rest indicating different metabolic pathways were promoted in this treatment. These results suggest that specific salivary components contribute to host-associated role in selecting the rumen commensal microbiota and its activity. These findings could open the possibility of developing new strategies to modulate the saliva composition as a way to manipulate the rumen function and activity.


Assuntos
Cabras , Microbiota , Animais , Ovinos , Cabras/fisiologia , Dieta/veterinária , Rúmen/metabolismo , Multiômica , Ruminantes/microbiologia , Fermentação , Ração Animal/análise
4.
Aliment Pharmacol Ther ; 58(4): 417-428, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386938

RESUMO

BACKGROUND: Carbohydrate fermentation plays a pivotal role in maintaining colonic health with excessive proximal and deficient distal fermentation being detrimental. AIMS: To utilise telemetric gas- and pH-sensing capsule technologies for defining patterns of regional fermentation following dietary manipulations, alongside conventional techniques of measuring fermentation. METHODS: In a double-blind crossover trial, 20 patients with irritable bowel syndrome were fed low FODMAP diets that included no extra fibre (total fibre content 24 g/day), or additional poorly fermented fibre, alone (33 g/day) or with fermentable fibre (45 g/day) for 2 weeks. Plasma and faecal biochemistry, luminal profiles defined by tandem gas- and pH-sensing capsules, and faecal microbiota were assessed. RESULTS: Plasma short-chain fatty acid (SCFA) concentrations (µmol/L) were median (IQR) 121 (100-222) with fibre combination compared with 66 (44-120) with poorly fermented fibre alone (p = 0.028) and 74 (55-125) control (p = 0.069), but no differences in faecal content were observed. Luminal hydrogen concentrations (%), but not pH, were higher in distal colon (mean 4.9 [95% CI: 2.2-7.5]) with fibre combination compared with 1.8 (0.8-2.8) with poorly fermented fibre alone (p = 0.003) and 1.9 (0.7-3.1) control (p = 0.003). Relative abundances of saccharolytic fermentative bacteria were generally higher in association with supplementation with the fibre combination. CONCLUSIONS: A modest increase in fermentable plus poorly fermented fibres had minor effects on faecal measures of fermentation, despite increases in plasma SCFA and abundance of fermentative bacteria, but the gas-sensing capsule, not pH-sensing capsule, detected the anticipated propagation of fermentation distally in the colon. The gas-sensing capsule technology provides unique insights into localisation of colonic fermentation. TRIAL REGISTRATION: ACTRN12619000691145.


Assuntos
Dieta FODMAP , Hidrogênio , Humanos , Hidrogênio/análise , Fermentação , Colo/metabolismo , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis , Fezes/microbiologia , Dieta
5.
J Appl Microbiol ; 132(3): 1652-1665, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34623737

RESUMO

AIMS: Yak is a dominant ruminant, well adapted to grazing on pasture year around in the harsh climate of the 3000-meter-high Qinghai-Tibetan Plateau. The complex microbial community that resides within the yak rumen is responsible for fermentation and contributes to its climatic adaptation. This study aimed to characterize the rumen microbiota responses to wide seasonal variations, especially those necessary for survival in the cold seasons. METHODS AND RESULTS: In the present study, we performed 16s rRNA gene sequencing to investigate the seasonal variations in microbiota composition, diversity and associated volatile fatty acids (VFAs) in yak rumen. The results showed that rumen microbiota were dominated by Bacteroides (72.13%-78.54%) and Firmicutes; the relative abundance of Firmicutes was higher in summer (17.44%) than in winter (10.67%; p < 0.05). The distribution of taxa differed among spring, summer and winter rumen communities (PERMANOVA, p = 0.001), whereas other taxa (e.g., Fibrobacter, Verrucomicrobia, Anaerostipes and Paludibacter), which could potentially help overcome harsh climate conditions were observed in higher abundance during the cold spring and winter seasons. The highest total VFA concentration in the yak rumen was obtained in summer (p < 0.05), followed by spring and winter, and both positive and negative correlations between VFAs and specific genera were revealed. CONCLUSIONS: Microbiota in yak rumen appear to be highly responsive to seasonal variations. Considering environmental factors, we suggest that seasonal adaptation by microbial communities in rumen enables their hosts to survive seasonal scarcity and cold stress in the spring and winter. SIGNIFICANCE AND IMPACT OF STUDY: The present study furthers our understanding of how microbial adaptation to seasonal variations in nutrient availability and climate may function in high plateau ruminants, providing insights into the tripartite relationship between the environment, host and microbiota.


Assuntos
Microbiota , Rúmen , Animais , Bovinos , Ácidos Graxos Voláteis , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Estações do Ano
7.
Microorganisms ; 8(10)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049981

RESUMO

This study aimed to characterize the rumen microbiota structure of cattle grazing in tropical rangelands throughout seasons and their responses in rumen ecology and productivity to a N-based supplement during the dry season. Twenty pregnant heifers grazing during the dry season of northern Australia were allocated to either N-supplemented or un-supplemented diets and monitored through the seasons. Rumen fluid, blood, and feces were analyzed before supplementation (mid-dry season), after two months supplementation (late-dry season), and post supplementation (wet season). Supplementation increased average daily weight gain (ADWG), rumen NH3-N, branched fatty acids, butyrate and acetic:propionic ratio, and decreased plasma δ15N. The supplement promoted bacterial populations involved in hemicellulose and pectin degradation and ammonia assimilation: Bacteroidales BS11, Cyanobacteria, and Prevotella spp. During the dry season, fibrolytic populations were promoted: the bacteria Fibrobacter, Cyanobacteria and Kiritimatiellaeota groups; the fungi Cyllamyces; and the protozoa Ostracodinium. The wet season increased the abundances of rumen protozoa and fungi populations, with increases of bacterial families Lachnospiraceae, Ruminococcaceae, and Muribaculaceae; the protozoa Entodinium and Eudiplodinium; the fungi Pecoramyces; and the archaea Methanosphera. In conclusion, the rumen microbiota of cattle grazing in a tropical grassland is distinctive from published studies that mainly describe ruminants consuming better quality diets.

8.
J Anim Sci ; 98(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32815548

RESUMO

Methane production from rumen methanogenesis contributes approximately 71% of greenhouse gas emissions from the agricultural sector. This study has performed genomic predictions for methane production from 99 sheep across 3 yr using a residual methane phenotype that is log methane yield corrected for live weight, rumen volume, and feed intake. Using genomic relationships, the prediction accuracies (as determined by the correlation between predicted and observed residual methane production) ranged from 0.058 to 0.220 depending on the time point being predicted. The best linear unbiased prediction algorithm was then applied to relationships between animals that were built on the rumen metabolome and microbiome. Prediction accuracies for the metabolome-based relationships for the two available time points were 0.254 and 0.132; the prediction accuracy for the first microbiome time point was 0.142. The second microbiome time point could not successfully predict residual methane production. When the metabolomic relationships were added to the genomic relationships, the accuracy of predictions increased to 0.274 (from 0.201 when only the genomic relationship was used) and 0.158 (from 0.081 when only the genomic relationship was used) for the two time points, respectively. When the microbiome relationships from the first time point were added to the genomic relationships, the maximum prediction accuracy increased to 0.247 (from 0.216 when only the genomic relationship was used), which was achieved by giving the genomic relationships 10 times more weighting than the microbiome relationships. These accuracies were higher than the genomic, metabolomic, and microbiome relationship matrixes achieved alone when identical sets of animals were used.


Assuntos
Genômica , Metaboloma , Metano/metabolismo , Microbiota , Ovinos/genética , Animais , Feminino , Fenótipo , Rúmen/metabolismo , Rúmen/microbiologia , Ovinos/metabolismo , Ovinos/microbiologia
9.
Front Microbiol ; 10: 861, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114550

RESUMO

The standardization of collection and processing methods for rumen samples is crucial to reduce the level of errors that may affect the analysis and interpretation of the data. The aim of this study was to compare two processing methods and their impacts on the microbial community composition analysis, from material that was either immediately frozen or samples that were stored as cell pellets after removing the supernatant prior to freezing. Eight rumen-fistulated Brahman steers received chloroform as an antimethanogenic compound for 21 days. Rumen fluid samples (60 mL per animal) were collected using a probe covered with two layers of cheesecloth at 3 h post feeding at day 0 prior-treatment (control period) and day 21 of treatment. One sub-set of samples were placed in dry ice and stored at -80°C (Method 1) for subsequent DNA extraction, while a second subset of samples was centrifuged, the supernatant removed and the microbial pellet and rumen contents placed in dry ice and stored at -80°C (Method 2) prior to DNA extractions. Phylogenetic based methods (Illumina Miseq) targeting the 16S rRNA gene were used to characterize the bacterial and archaeal communities from both collection methods for the control and treatment periods. The results from this study showed that the chloroform treatment was significantly different for all beta diversity measures regardless of the processing method used. Significant differences in the relative abundances of some bacteria and archaea, such as Elusimicrobia, Fibrobacteres, Lentisphaerae, Spirochaetes, and Verrucomicrobia and Methanomassiliicoccaceae, were observed at higher levels in the Method 2. These microbial populations are known to have fragile cell wall structures and are susceptible to cell lysis. Regardless of the processing method used, both identified the key microbial groups and can be used to compare the relative shifts in the rumen microbiome between treatments. However, immediately freezing samples might alter the abundance of material from species that are more readily lysed and will not be suitable for studies that aim to assign absolute abundance values to these species within the rumen.

10.
Front Microbiol ; 9: 2161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319557

RESUMO

The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in "omic" data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent "omics" approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.

11.
Front Microbiol ; 9: 1582, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131771

RESUMO

The aim of this study was to investigate the effects of 3-nitrooxypropanol (3-NOP) and chloroform on methane (CH4) and H2 production, ruminal metabolites and microbial community structure in cattle fed a tropical forage diet. Eight rumen-fistulated steers were fed a roughage hay diet (Rhodes grass; Chloris gayana) for 31 days (control period). Four animals received the antimethanogenic compound chloroform (1.6 g chloroform-cyclodextrin/100 kg live weight (LW)) while the other four received 3-NOP (2.5 g 3-NOP/animal/day) for 21 days. Methane decrease compared with control period was similar for both treatments (30-38%) with no differences for expelled H2 between controls and treatments. Daily weight gain (DWG) was significantly increased when animals were treated with 3-NOP compared with chloroform and control. Regarding the ruminal fermentation parameters increases in ammonia, acetate and branched chain fatty acids were observed with both compounds compared with the controls. Also, methylamines, alcohols and dimethyl sulfone (DMSO2) concentrations were significantly increased with the treatments compared with control, being greater with 3-NOP. The rumen microbial analyses revealed a similar profile for both treatments, with a shift in operational taxonomic units (OTUs) assigned to the Prevotellaceae and Campylobacteraceae family. Moreover, major archaeal OTUs associated with Methanobrevibacter and Methanosphaera were significantly affected to varying extents based on the inhibitory treatments compared to the control. The abundance of the Methanobrevibacter spp. was decreased by 3-NOP and chloroform, while the Methanomassiliicoccaceae family was inhibited only by 3-NOP. The results suggest that despite the specific mode of action of 3-NOP on methanogens, inhibition of methanogenesis by both compounds resulted in similar responses in metabolism and microbial community structure in the rumen. We hypothesized that these changes were driven by the redirection of metabolic hydrogen ([H]) by both treatments. Therefore results from previous publications using chloroform as an inhibitor of methanogenesis may be useful in predicting ruminal microbiota and fermentation responses to 3-NOP.

12.
ISME J ; 12(12): 2942-2953, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30068938

RESUMO

The genus Methanosphaera is a well-recognized but poorly characterized member of the mammalian gut microbiome, and distinctive from Methanobrevibacter smithii for its ability to induce a pro-inflammatory response in humans. Here we have used a combination of culture- and metagenomics-based approaches to expand the representation and information for the genus, which has supported the examination of their phylogeny and physiological capacity. Novel isolates of the genus Methanosphaera were recovered from bovine rumen digesta and human stool, with the bovine isolate remarkable for its large genome size relative to other Methanosphaera isolates from monogastric hosts. To substantiate this observation, we then recovered seven high-quality Methanosphaera-affiliated population genomes from ruminant and human gut metagenomic datasets. Our analyses confirm a monophyletic origin of Methanosphaera spp. and that the colonization of monogastric and ruminant hosts favors representatives of the genus with different genome sizes, reflecting differences in the genome content needed to persist in these different habitats.


Assuntos
Microbioma Gastrointestinal , Tamanho do Genoma/genética , Metagenômica , Methanobacteriaceae/genética , Animais , Bovinos , Fezes/microbiologia , Humanos , Methanobacteriaceae/fisiologia , Methanobrevibacter/genética , Methanobrevibacter/fisiologia , Filogenia , Rúmen/microbiologia
13.
Front Genet ; 9: 62, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535763

RESUMO

Dairy heifers were subjected to a non-life-threatening challenge designed to induce ruminal acidosis by feeding grain and sugar. Large among animal variation in clinical signs of acidosis, rumen metabolite concentrations, and the rumen microbiome occurred. This exploratory study investigates sources of the variation by examining associations between the genome, metabolome, and microbiome, albeit with a limited population. The broader objective is to provide a rationale for a larger field study to identify markers for susceptibility to ruminal acidosis. Initially, heifers (n = 40) allocated to five feed additive groups were fed 20-days pre-challenge with a total mixed ration and additives. Fructose (0.1% of bodyweight/day) was added for the last 10 days pre-challenge. On day 21 heifers were challenged with 1.0% of bodyweight dry matter wheat + 0.2% of bodyweight fructose + additives. Rumen samples were collected via stomach tube weekly (day 0, 7, and 14) and at five times over 3.6 h after challenge and analyzed for pH and volatile fatty acid, ammonia, D-, and L-lactate concentrations. Relative abundance of bacteria and archaea were determined using Illumina MiSeq. Genotyping was undertaken using a 150K Illumina SNPchip. Genome-wide association was performed for metabolite and microbiome measures (n = 33). Few genome associations occurred with rumen pH, concentration of acetate, propionate, total volatile fatty acids, or ammonia, or the relative abundance of the Firmicutes, Bacteroidetes, and Spirochaetes phyla. Metabolites and microbial phyla that had markers associated and quantitative trait loci (QTL) were: acetate to propionate ratio (A:P), D-, L-, and total lactate, butyrate, acidosis eigenvalue, Actinobacteria, Chloroflexi, Euryarchaeota, Fibrobacteres, Planctomycetes, Proteobacteria, and Tenericutes. A putative genomic region overlapped for Actinobacteria, Euryarchaeota, and Fibrobacteres and covered the region that codes for matrix extracellular phosphoglycoprotein (MEPE). Other overlapping regions were: (1) Chloroflexi, Tenericutes, and A:P, (2) L- and total lactate and Actinobacteria, and (3) Actinobacteria, Euryarchaeota, Fibrobacteres, and A:P. Genome-wide associations with the metabolome and microbiome occurred despite the small population, suggesting that markers for ruminal acidosis susceptibility exist. The findings may explain some of the variation in metabolomic and microbial data and provide a rationale for a larger study with a population that has variation in acidosis.

14.
Front Microbiol ; 8: 1871, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051749

RESUMO

Strategies to manage metabolic hydrogen ([H]) in the rumen should be considered when reducing ruminant methane (CH4) emissions. However, little is known about the use of dietary treatments to stimulate rumen microorganisms capable of capturing the [H] available when CH4 is inhibited in vivo. The effects of the phenolic compound phloroglucinol on CH4 production, [H] flows and subsequent responses in rumen fermentation and microbial community composition when methanogenesis is inhibited were investigated in cattle. Eight rumen fistulated Brahman steers were randomly allocated in two groups receiving chloroform as an antimethanogenic compound for 21 days. Following that period one group received chloroform + phloroglucinol for another 16 days, whilst the other group received only chloroform during the same period. The chloroform treatment resulted in a decrease in CH4 production and an increase in H2 expelled with a shift in rumen fermentation toward higher levels of propionate and formate and lower levels of acetate at day 21 of treatment. Bacterial operational taxonomic units (OTUs) assigned to Prevotella were promoted whilst Archaea and Synergistetes OTUs were decreased with the chloroform treatment as expected. The shift toward formate coincided with increases in Ruminococcus flavefaciens, Butyrivibrio fibrisolvens, and Methanobrevibacter ruminantium species. The addition of chloroform + phloroglucinol in the rumen resulted in a decrease of H2 expelled (g) per kg of DMI and moles of H2 expelled per mol of CH4 decreased compared with the chloroform only treated animals. A shift toward acetate and a decrease in formate were observed for the chloroform + phloroglucinol-treated animals at day 37. These changes in the rumen fermentation profile were accompanied by a relative increase of OTUs assigned to Coprococcus spp., which could suggest this genus is a significant contributor to the metabolism of this phenolic compound in the rumen. This study demonstrates for the first time in vivo that under methanogenesis inhibition, H2 gas accumulation can be decreased by redirecting [H] toward alternative sinks through the nutritional stimulation of specific microbial groups. This results in the generation of metabolites of value for the host while also helping to maintain a low H2 partial pressure in the methane-inhibited rumen.

15.
PLoS One ; 12(8): e0182235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813529

RESUMO

The aim of this work was to evaluate the effect of feeding management during the first month of life (natural with the mother, NAT, or artificial with milk replacer, ART) on the rumen microbial colonization and the host innate immune response. Thirty pregnant goats carrying two fetuses were used. At birth one kid was taken immediately away from the doe and fed milk replacer (ART) while the other remained with the mother (NAT). Kids from groups received colostrum during first 2 days of life. Groups of four kids (from ART and NAT experimental groups) were slaughtered at 1, 3, 7, 14, 21 and 28 days of life. On the sampling day, after slaughtering, the rumen content was sampled and epithelial rumen tissue was collected. Pyrosequencing analyses of the bacterial community structure on samples collected at 3, 7, 14 and 28 days showed that both systems promoted significantly different colonization patterns (P = 0.001). Diversity indices increased with age and were higher in NAT feeding system. Lower mRNA abundance was detected in TLR2, TLR8 and TLR10 in days 3 and 5 compared to the other days (7, 14, 21 and 28). Only TLR5 showed a significantly different level of expression according to the feeding system, presenting higher mRNA abundances in ART kids. PGLYRP1 showed significantly higher abundance levels in days 3, 5 and 7, and then experienced a decline independently of the feeding system. These observations confirmed a highly diverse microbial colonisation from the first day of life in the undeveloped rumen, and show that the colonization pattern substantially differs between pre-ruminants reared under natural or artificial milk feeding systems. However, the rumen epithelial immune development does not differentially respond to distinct microbial colonization patterns.


Assuntos
Ração Animal , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Microbioma Gastrointestinal , Expressão Gênica , Apoio Nutricional , Rúmen/microbiologia , Desmame , Animais , Biodiversidade , Biomarcadores , Código de Barras de DNA Taxonômico , Feminino , Mucosa Gástrica/imunologia , Cabras , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Metagenoma , Metagenômica/métodos , Gravidez , Rúmen/imunologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-28674607

RESUMO

Fluoroacetate producing plants grow worldwide and it is believed they produce this toxic compound as a defence mechanism against grazing by herbivores. Ingestion by livestock often results in fatal poisonings, which causes significant economic problems to commercial farmers in many countries such as Australia, Brazil and South Africa. Several approaches have been adopted to protect livestock from the toxicity with limited success including fencing, toxic plant eradication and agents that bind the toxin. Genetically modified bacteria capable of degrading fluoroacetate have been able to protect ruminants from fluoroacetate toxicity under experimental conditions but concerns over the release of these microbes into the environment have prevented the application of this technology. Recently, a native bacterium from an Australian bovine rumen was isolated which can degrade fluoroacetate. This bacterium, strain MFA1, which belongs to the Synergistetes phylum degrades fluoroacetate to fluoride ions and acetate. The discovery and isolation of this bacterium provides a new opportunity to detoxify fluoroacetate in the rumen. This review focuses on fluoroacetate toxicity in ruminant livestock, the mechanism of fluoroacetate toxicity, tolerance of some animals to fluoroaceate, previous attempts to mitigate toxicity, aerobic and anaerobic microbial degradation of fluoroacetate, and future directions to overcome fluoroacetate toxicity.

17.
Front Microbiol ; 8: 385, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326079

RESUMO

Ureolytic bacteria are key organisms in the rumen producing urease enzymes to catalyze the breakdown of urea to ammonia for the synthesis of microbial protein. However, little is known about the diversity and distribution of rumen ureolytic microorganisms. The urease gene (ureC) has been the target gene of choice for analysis of the urea-degrading microorganisms in various environments. In this study, we investigated the predominant ureC genes of the ureolytic bacteria in the rumen of dairy cows using high-throughput sequencing. Six dairy cows with rumen fistulas were assigned to a two-period cross-over trial. A control group (n = 3) were fed a total mixed ration without urea and the treatment group (n = 3) were fed rations plus 180 g urea per cow per day at three separate times. Rumen bacterial samples from liquid and solid digesta and rumen wall fractions were collected for ureC gene amplification and sequencing using Miseq. The wall-adherent bacteria (WAB) had a distinct ureolytic bacterial profile compared to the solid-adherent bacteria (SAB) and liquid-associated bacteria (LAB) but more than 55% of the ureC sequences did not affiliate with any known taxonomically assigned urease genes. Diversity analysis of the ureC genes showed that the Shannon and Chao1 indices for the rumen WAB was lower than those observed for the SAB and LAB (P < 0.01). The most abundant ureC genes were affiliated with Methylococcaceae, Clostridiaceae, Paenibacillaceae, Helicobacteraceae, and Methylophilaceae families. Compared with the rumen LAB and SAB, relative abundance of the OTUs affiliated with Methylophilus and Marinobacter genera were significantly higher (P < 0.05) in the WAB. Supplementation with urea did not alter the composition of the detected ureolytic bacteria. This study has identified significant populations of ureolytic WAB representing genera that have not been recognized or studied previously in the rumen. The taxonomic classification of rumen ureC genes in the dairy cow indicates that the majority of ureolytic bacteria are yet to be identified. This survey has expanded our knowledge of ureC gene information relating to the rumen ureolytic microbial community, and provides a basis for obtaining regulatory targets of ureolytic bacteria to moderate urea hydrolysis in the rumen.

18.
Front Microbiol ; 7: 1122, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486452

RESUMO

Management of metabolic hydrogen ([H]) in the rumen has been identified as an important consideration when reducing ruminant CH4 emissions. However, little is known about hydrogen flux and microbial rumen population responses to CH4 inhibition when animals are fed with slowly degradable diets. The effects of the anti-methanogenic compound, chloroform, on rumen fermentation, microbial ecology, and H2/CH4 production were investigated in vivo. Eight rumen fistulated Brahman steers were fed a roughage hay diet (Rhode grass hay) or roughage hay:concentrate diet (60:40) with increasing levels (low, mid, and high) of chloroform in a cyclodextrin matrix. The increasing levels of chloroform resulted in an increase in H2 expelled as CH4 production decreased with no effect on dry matter intakes. The amount of expelled H2 per mole of decreased methane, was lower for the hay diet suggesting a more efficient redirection of hydrogen into other microbial products compared with hay:concentrate diet. A shift in rumen fermentation toward propionate and branched-chain fatty acids was observed for both diets. Animals fed with the hay:concentrate diet had both higher formate concentration and H2 expelled than those fed only roughage hay. Metabolomic analyses revealed an increase in the concentration of amino acids, organic, and nucleic acids in the fluid phase for both diets when methanogenesis was inhibited. These changes in the rumen metabolism were accompanied by a shift in the microbiota with an increase in Bacteroidetes:Firmicutes ratio and a decrease in Archaea and Synergistetes for both diets. Within the Bacteroidetes family, some OTUs assigned to Prevotella were promoted under chloroform treatment. These bacteria may be partly responsible for the increase in amino acids and propionate in the rumen. No significant changes were observed for abundance of fibrolytic bacteria, protozoa, and fungi, which suggests that fiber degradation was not impaired. The observed 30% decrease in methanogenesis did not adversely affect rumen metabolism and the rumen microbiota was able to adapt and redirect [H] into other microbial end-products for both diets. However, it is also required dietary supplements or microbial treatments to capture the additional H2 expelled by the animal to further improve rumen digestive efficiency.

19.
Archaea ; 2016: 5916067, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27274707

RESUMO

Host factors are regarded as important in shaping the archaeal community in the rumen but few controlled studies have been performed to demonstrate this across host species under the same environmental conditions. A study was designed to investigate the structure of the methanogen community in the rumen of two indigenous (yak and Tibetan sheep) and two introduced domestic ruminant (cattle and crossbred sheep) species raised and fed under similar conditions on the high altitude Tibetan Plateau. The methylotrophic Methanomassiliicoccaceae was the predominant archaeal group in all animals even though Methanobrevibacter are usually present in greater abundance in ruminants globally. Furthermore, within the Methanomassiliicoccaceae family members from Mmc. group 10 and Mmc. group 4 were dominant in Tibetan Plateau ruminants compared to Mmc. group 12 found to be highest in other ruminants studied. Small ruminants presented the highest number of sequences that belonged to Methanomassiliicoccaceae compared to the larger ruminants. Although the methanogen community structure was different among the ruminant species, there were striking similarities between the animals in this environment. This indicates that factors such as the extreme environmental conditions and diet on the Tibetan Plateau might have a greater impact on rumen methanogen community compared to host differences.


Assuntos
Archaea/isolamento & purificação , Archaea/metabolismo , Biodiversidade , Metano/metabolismo , Rúmen/microbiologia , Ruminantes , Animais , Archaea/classificação , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , Genes de RNAr , Dados de Sequência Molecular , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Tibet
20.
ISME J ; 10(10): 2376-88, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27022996

RESUMO

The Australian macropodids (kangaroos and wallabies) possess a distinctive foregut microbiota that contributes to their reduced methane emissions. However, methanogenic archaea are present within the macropodid foregut, although there is scant understanding of these microbes. Here, an isolate taxonomically assigned to the Methanosphaera genus (Methanosphaera sp. WGK6) was recovered from the anterior sacciform forestomach contents of a Western grey kangaroo (Macropus fuliginosus). Like the human gut isolate Methanosphaera stadtmanae DSMZ 3091(T), strain WGK6 is a methylotroph with no capacity for autotrophic growth. In contrast, though with the human isolate, strain WGK6 was found to utilize ethanol to support growth, but principally as a source of reducing power. Both the WGK6 and DSMZ 3091(T) genomes are very similar in terms of their size, synteny and G:C content. However, the WGK6 genome was found to encode contiguous genes encoding putative alcohol and aldehyde dehydrogenases, which are absent from the DSMZ 3091(T) genome. Interestingly, homologs of these genes are present in the genomes for several other members of the Methanobacteriales. In WGK6, these genes are cotranscribed under both growth conditions, and we propose the two genes provide a plausible explanation for the ability of WGK6 to utilize ethanol for methanol reduction to methane. Furthermore, our in vitro studies suggest that ethanol supports a greater cell yield per mol of methane formed compared to hydrogen-dependent growth. Taken together, this expansion in metabolic versatility can explain the persistence of these archaea in the kangaroo foregut, and their abundance in these 'low-methane-emitting' herbivores.


Assuntos
Álcoois/metabolismo , Archaea/isolamento & purificação , Archaea/metabolismo , Microbioma Gastrointestinal , Macropodidae/microbiologia , Metano/metabolismo , Animais , Archaea/classificação , Archaea/genética , Austrália , Composição de Bases , Hidrogênio/metabolismo , Estômago/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...