Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 14: 509091, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132870

RESUMO

Reaction time testing is widely used in online computerized concussion assessments, and most concussion studies utilizing the metric have demonstrated varying degrees of difference between concussed and non-concussed individuals. The problem with most of these online concussion assessments is that they predominantly rely on consumer grade technology. Typical administration of these reaction time tests involves presenting a visual stimulus on a computer monitor and prompting the test subject to respond as quickly as possible via keypad or computer mouse. However, inherent delays and variabilities are introduced to the reaction time measure by both computer and associated operating systems that the concussion assessment tool is installed on. The authors hypothesized systems that are typically used to collect concussion reaction time data would demonstrate significant errors in reaction time measurements. To remove human bias, a series of experiments was conducted robotically to assess timing errors introduced by reaction time tests under four different conditions. In the first condition, a visual reaction time test was conducted by flashing a visual stimulus on a computer monitor. Detection was via photodiode and mechanical response was delivered via computer mouse. The second condition employed a mobile device for the visual stimulus, and the mechanical response was delivered to the mobile device's touchscreen. The third condition simulated a tactile reaction time test, and mechanical response was delivered via computer mouse. The fourth condition also simulated a tactile reaction time test, but response was delivered to a dedicated device designed to store the interval between stimulus delivery and response, thus bypassing any problems hypothesized to be introduced by computer and/or computer software. There were significant differences in the range of responses recorded from the four different conditions with the reaction time collected from visual stimulus on a mobile device being the worst and the device with dedicated hardware designed for the task being the best. The results suggest that some of the commonly used visual tasks on consumer grade computers could be (and have been) introducing significant errors for reaction time testing and that dedicated hardware designed for the reaction time task is needed to minimize testing errors.

2.
Bio Protoc ; 9(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31687423

RESUMO

In health, the high-speed airflow associated with cough represents a vital backup mechanism for clearing accumulated mucus from our airways. However, alterations in the mucus layer in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) leads to the mucus layer adhered to the airway surfaces, representing the nidus of chronic lung infection. To understand what is different about diseased mucus and why cough clearance is defective, there is a need for techniques to quantify the strength of the interactions limiting the ability of airflow to strip mucus from the airway surface (i.e., adhesive strength) or tear mucus apart (i.e., cohesive strength). To overcome the issues with measuring these properties in a soft (i.e., low elastic modulus) mucus layer, we present here novel peel-testing technologies capable of quantifying the mucus adhesive strength on cultured airway cells and cohesive strength of excised mucus samples. While this protocol focuses on measurements of airway mucus, this approach can easily be adapted to measuring adhesive/cohesive properties of other soft biological materials.

3.
Proc Natl Acad Sci U S A ; 115(49): 12501-12506, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30420506

RESUMO

Clearance of intrapulmonary mucus by the high-velocity airflow generated by cough is the major rescue clearance mechanism in subjects with mucoobstructive diseases and failed cilial-dependent mucus clearance, e.g., subjects with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Previous studies have investigated the mechanical forces generated at airway surfaces by cough but have not considered the effects of mucus biophysical properties on cough efficacy. Theoretically, mucus can be cleared by cough from the lung by an adhesive failure, i.e., breaking mucus-cell surface adhesive bonds and/or by cohesive failure, i.e., directly fracturing mucus. Utilizing peel-testing technologies, mucus-epithelial surface adhesive and mucus cohesive strengths were measured. Because both mucus concentration and pH have been reported to alter mucus biophysical properties in disease, the effects of mucus concentration and pH on adhesion and cohesion were compared. Both adhesive and cohesive strengths depended on mucus concentration, but neither on physiologically relevant changes in pH nor bicarbonate concentration. Mucus from bronchial epithelial cultures and patient sputum samples exhibited similar adhesive and cohesive properties. Notably, the magnitudes of both adhesive and cohesive strength exhibited similar velocity and concentration dependencies, suggesting that viscous dissipation of energy within mucus during cough determines the efficiency of cough clearance of diseased, hyperconcentrated, mucus. Calculations of airflow-induced shear forces on airway mucus related to mucus concentration predicted substantially reduced cough clearance in small versus large airways. Studies designed to improve cough clearance in subjects with mucoobstructive diseases identified reductions of mucus concentration and viscous dissipation as key therapeutic strategies.


Assuntos
Tosse/patologia , Muco/fisiologia , Bicarbonatos , Adesão Celular , Fibrose Cística , Células Epiteliais , Humanos , Concentração de Íons de Hidrogênio , Pneumopatias , Depuração Mucociliar/fisiologia , Muco/química , Fenômenos Fisiológicos Respiratórios , Reologia , Escarro
4.
Mil Med ; 181(5 Suppl): 45-50, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27168552

RESUMO

The purpose of this research was to determine if cortical metrics-a unique set of sensory-based assessment tools-could be used to characterize and differentiate concussed individuals from nonconcussed individuals. Cortical metrics take advantage of the somatotopic relationship between skin and cortex, and the protocols are designed to evoke interactions between adjacent cortical regions to investigate fundamental mechanisms that mediate cortical-cortical interactions. Student athletes, aged 18 to 22 years, were recruited into the study through an athletic training center that made determinations of postconcussion return-to-play status. Sensory-based performance tasks utilizing vibrotactile stimuli applied to tips of the index and middle fingers were administered to test an individual's amplitude discrimination, temporal order judgment, and duration discrimination capacity in the presence and absence of illusion-inducing conditioning stimuli. Comparison of the performances in the presence and absence of conditioning stimuli demonstrated differences between concussed and nonconcussed individuals. Additionally, mathematically combining results from the measures yields a unique central nervous system (CNS) profile that describes an individual's information processing capacity. A comparison was made of CNS profiles of concussed vs. nonconcussed individuals and demonstrated with 99% confidence that the two populations are statistically distinct. The study established solid proof-of-concept that cortical metrics have significant potential as a quantitative biomarker of CNS status.


Assuntos
Concussão Encefálica/classificação , Concussão Encefálica/diagnóstico , Equipamentos para Diagnóstico/normas , Doenças do Sistema Nervoso/diagnóstico , Análise e Desempenho de Tarefas , Equipamentos para Diagnóstico/estatística & dados numéricos , Feminino , Humanos , Masculino , Análise Multivariada , Doenças do Sistema Nervoso/complicações , Testes Neuropsicológicos/estatística & dados numéricos , Estudantes/estatística & dados numéricos , Percepção do Tato , Adulto Jovem
5.
Cardiovasc Eng Technol ; 6(4): 533-45, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26577484

RESUMO

The purpose of this study was to develop enabling bioreactor technologies using a novel voice coil actuator system for investigating the effects of periodic strain on cardiac patches fabricated with rat cardiomyocytes. The bioengineered muscle constructs used in this study were formed by culturing rat neonatal primary cardiac cells on a fibrin gel. The physical design of the bioreactor was initially conceived using Solidworks to test clearances and perform structural strain analysis. Once the software design phase was completed the bioreactor was assembled using a combination of commercially available, custom machined, and 3-D printed parts. We utilized the bioreactor to evaluate the effect of a 4-h stretch protocol on the contractile properties of the tissue after which immunohistological assessment of the tissue was also performed. An increase in contractile force was observed after the strain protocol of 10% stretch at 1 Hz, with no significant increase observed in the control group. Additionally, an increase in cardiac myofibril alignment, connexin 43 expression, and collagen type I distribution were noted. In this study we demonstrated the effectiveness of a new bioreactor design to improve contractility of engineered cardiac muscle tissue.


Assuntos
Reatores Biológicos , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Engenharia Tecidual/instrumentação , Animais , Células Cultivadas , Colágeno Tipo I/metabolismo , Desenho de Equipamento , Fibrina/química , Fenômenos Mecânicos , Contração Miocárdica/fisiologia , Ratos , Software , Alicerces Teciduais
6.
Biores Open Access ; 3(1): 19-28, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24570842

RESUMO

A programmable bioreactor using a voice-coil actuator was developed to enable research on the effects of periodic vibratory stimulus on human and porcine mesenchymal stem cells (MSCs). We hypothesized that low frequency vibrations would result in a cartilage phenotype and higher frequency vibrations would result in a bone phenotype. The mechanical stimulation protocol is adjusted from a computer external to the incubator via a USB cable. Once programmed, the embedded microprocessor and sensor system on the bioreactor execute the protocol independent of the computer. In each test, a sinusoidal stimulus was applied to a culture plate in 1-min intervals with a 15-min rest following each, for a total of 15 h per day for 10 days. Frequencies of 1 and 100 Hz were applied to cultures of both human and porcine umbilical cord-derived MSCs. Chondrogenesis was determined by Alcian blue staining for glycosaminoglycans and an increased differentiation index (ratio of mRNA for collagen II and collagen I). Osteogenic differentiation was indicated with Alizarin red for calcium staining and increased bone morphogenetic protein 2 mRNA. One-hertz stimulation resulted in a cartilage phenotype for both human and porcine MSCs, while 100-Hz stimulation resulted in a bone phenotype.

7.
J Craniofac Surg ; 25(1): 111-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24406561

RESUMO

OBJECTIVE: Microtia is treated with rib cartilage sculpting and staged procedures; though aesthetically pleasing, these constructs lack native ear flexibility. Tissue-engineered (TE) elastic cartilage may bridge this gap; however, TE cartilage implants lead to hypertrophic changes with calcification and loss of flexibility. Retaining flexibility in TE cartilage must focus on increased elastin, maintained collagen II, decreased collagen X, with prevention of calcification. This study compares biochemical properties of human cartilage to TE cartilage from umbilical cord mesenchymal stem cells (UCMSCs). Our goal is to establish a baseline for clinically useful TE cartilage. METHODS: Discarded cartilage from conchal bowl, microtic ears, preauricular tags, rib, and TE cartilage were evaluated for collagen I, II, X, calcium, glycosaminoglycans, elastin, and fibrillin I and III. Human UCMSCs were chondroinduced on 2D surfaces and 3D D,L-lactide-co-glycolic acid (PLGA) fibers. RESULTS: Cartilage samples demonstrated similar staining for collagens I, II, and X, elastin, and fibrillin I and III, but differed from rib. TE pellets and PLGA-supported cartilage were similar to auricular samples in elastin and fibrillin I staining. TE samples were exclusively stained for fibrillin III. Only microtic samples demonstrated calcium staining. CONCLUSIONS: TE cartilage expressed similar levels of elastin, fibrillin I, and collagens I and X when compared to native cartilage. Microtic cartilage demonstrated elevated calcium, suggesting this abnormal tissue may not be a viable cell source for TE cartilage. TE cartilage appears to recapitulate the embryonic development of fibrillin III, which is not expressed in adult tissue, possibly providing a strategy to control TE elastic cartilage phenotype.


Assuntos
Cartilagem/química , Engenharia Tecidual/métodos , Cálcio/química , Proteínas de Ligação ao Cálcio/química , Condrogênese/fisiologia , Colágeno Tipo I/química , Colágeno Tipo II/química , Colágeno Tipo X/química , Pavilhão Auricular/anormalidades , Cartilagem da Orelha/química , Elastina/química , Proteínas da Matriz Extracelular/química , Fibrilinas , Glicosaminoglicanos/química , Humanos , Processamento de Imagem Assistida por Computador/métodos , Células-Tronco Mesenquimais/fisiologia , Proteínas dos Microfilamentos/química , Costelas/química , Cordão Umbilical/citologia
8.
J Neurosci Methods ; 204(2): 215-20, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22155443

RESUMO

Current methods for applying multi-site vibratory stimuli to the skin typically involve the use of multiple, individual vibrotactile stimulators. Limitations of such an arrangement include difficulty with both positioning the stimuli as well as ensuring that stimuli are delivered in a synchronized and deliberate manner. Previously, we reported a two-site tactile stimulator that was developed in order to solve these problems (Tannan et al., 2007a). Due to both the success of that novel stimulator and the limitations that were inherent in that device, we designed and fabricated a four-site stimulator that provides a number of advantages over the previous version. First, the device can stimulate four independent skin sites and is primarily designed for stimulating the digit tips. Second, the positioning of the probe tips has been re-designed to provide better ergonomic hand placement. Third, the device is much more portable than the previously reported stimulator. Fourth, the stimulator head has a much smaller footprint on the table or surface where it resides. To demonstrate the capacity of the device for delivering tactile stimulation at four independent sites, a finger agnosia protocol, in the presence and absence of conditioning stimuli, was conducted on seventeen healthy control subjects. The study demonstrated that with increasing amplitudes of vibrotactile conditioning stimuli concurrent with the agnosia test, inaccuracies of digit identification increased, particularly at digits D3 and D4. The results are consistent with prior studies that implicated synchronization of adjacent and near-adjacent cortical ensembles with conditioning stimuli in impacting TOJ performance (Tommerdahl et al., 2007a,b).


Assuntos
Discriminação Psicológica/fisiologia , Processamento Eletrônico de Dados , Tato/fisiologia , Vibração , Adulto , Agnosia/diagnóstico , Processamento Eletrônico de Dados/instrumentação , Processamento Eletrônico de Dados/métodos , Feminino , Dedos/inervação , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Física/instrumentação , Estimulação Física/métodos , Psicofísica , Limiar Sensorial/fisiologia , Pele/inervação , Adulto Jovem
9.
Front Aging Neurosci ; 3: 18, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163221

RESUMO

While it is well known that skin physiology - and consequently sensitivity to peripheral stimuli - degrades with age, what is less appreciated is that centrally mediated mechanisms allow for maintenance of the same degree of functionality in processing these peripheral inputs and interacting with the external environment. In order to demonstrate this concept, we obtained observations of processing speed, sensitivity (thresholds), discriminative capacity, and adaptation metrics on subjects ranging in age from 18 to 70. The results indicate that although reaction speed and sensory thresholds change with age, discriminative capacity, and adaptation metrics do not. The significance of these findings is that similar metrics of adaptation have been demonstrated to change significantly when the central nervous system (CNS) is compromised. Such compromise has been demonstrated in subject populations with autism, chronic pain, acute NMDA receptor block, concussion, and with tactile-thermal interactions. If the metric of adaptation parallels cortical plasticity, the results of the current study suggest that the CNS in the aging population is still capable of plastic changes, and this cortical plasticity could be the mechanism that compensates for the degradations that are known to naturally occur with age. Thus, these quantitative measures - since they can be obtained efficiently and objectively, and appear to deviate from normative values significantly with systemic cortical alterations - could be useful indicators of cerebral cortical health.

10.
Clin J Pain ; 27(9): 755-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21593667

RESUMO

OBJECTIVE: To investigate the clinical correlates of central nervous system alterations among women with vulvodynia. Altered central sensitization has been linked to dysfunction in central nervous system-inhibitory pathways (e.g., γ-aminobutyric acidergic), and metrics of sensory adaptation, a centrally mediated process that is sensitive to this dysfunction, could potentially be used to identify women at risk of treatment failure using conventional approaches. METHODS: Twelve women with vulvodynia and 20 age-matched controls participated in this study, which was conducted by sensory testing of the right hand's index and middle fingers. The following sensory precepts were assessed: (1) vibrotactile detection threshold; (2) amplitude discrimination capacity (defined as the ability to detect differences in intensity of simultaneously delivered stimuli to 2 fingers); and (3) a metric of adaptation (determined by the impact that applying conditioning stimuli have on amplitude discriminative capacity). RESULTS: Participants did not differ on key demographic variables, vibrotactile detection threshold, and amplitude discrimination capacity. However, we found significant differences from controls in adaptation metrics in 1 subgroup of vulvodynia patients. Compared with healthy controls and women with a shorter history of pain [n=5; duration (y) = 3.4 ± 1.3], those with a longer history [n=7; duration (y) = 9.3 ± 1.4)] were found to be less likely to have adaptation metrics similar to control values. DISCUSSION: Chronic pain is thought to lead to altered central sensitization, and adaptation is a centrally mediated process that is sensitive to this condition. This report suggests that similar alterations exist in a subgroup of vulvodynia patients.


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Sistema Nervoso Central/fisiopatologia , Limiar da Dor/fisiologia , Vulvodinia/patologia , Adaptação Fisiológica/fisiologia , Adulto , Estudos de Casos e Controles , Discriminação Psicológica , Feminino , Humanos , Estimulação Física/métodos , Vulvodinia/classificação , Vulvodinia/fisiopatologia
11.
Biomaterials ; 32(14): 3575-83, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21324402

RESUMO

One of the obstacles to the potential clinical utility of bioengineered skeletal muscle is its limited force generation capacity. Since engineered muscle, unlike most native muscle tissue, is composed of relatively short myofibers, we hypothesized that, its force production and transmission would be profoundly influenced by cell-matrix interactions. To test this hypothesis, we systematically varied the matrix protein type (collagen I/fibrin/Matrigel) and concentration in engineered, hydrogel-based neonatal rat skeletal muscle bundles and assessed the resulting tissue structure, generation of contractile force, and intracellular Ca(2+) handling. After two weeks of culture, the muscle bundles consisted of highly aligned and cross-striated myofibers and exhibited standard force-length and force-frequency relationships achieving tetanus at 40 Hz. The use of 2 mg/ml fibrin (control) yielded isometric tetanus amplitude of 1.4 ± 0.3 mN as compared to 0.9 ± 0.4 mN measured in collagen I-based bundles. Higher fibrin and Matrigel concentrations synergistically yielded further increase in active force generation to 2.8 ± 0.5 mN without significantly affecting passive mechanical properties, tetanus-to-twitch ratio, and twitch kinetics. Optimized matrix composition yielded significant cellular hypertrophy (protein/DNA ratio = 11.4 ± 4.1 vs. 6.5 ± 1.9 µg/µg in control) and a prolonged Ca(2+) transient half-width (Ca(50) = 232.8 ± 33.3 vs. 101.7 ± 19.8 ms). The use of growth-factor-reduced Matrigel, instead of standard Matrigel did not alter the obtained results suggesting enhanced cell-matrix interactions rather than growth factor supplementation as an underlying cause for the measured increase in contractile force. In summary, biomaterial-based manipulation of cell-matrix interactions represents an important target for improving contractile force generation in engineered skeletal muscle.


Assuntos
Bioengenharia/métodos , Matriz Extracelular/metabolismo , Músculo Esquelético/patologia , Animais , Cálcio/metabolismo , Células Cultivadas , Hidrogéis/química , Ratos , Ratos Sprague-Dawley
12.
Tissue Eng Part C Methods ; 16(4): 711-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19807268

RESUMO

For over 300 years, scientists have understood that stimulation, in the form of an electrical impulse, is required for normal muscle function. More recently, the role of specific parameters of the electrical impulse (i.e., the pulse amplitude, pulse width, and work-to-rest ratio) has become better appreciated. However, most existing bioreactor systems do not permit sufficient control over these parameters. Therefore, the aim of the current study was to engineer an inexpensive muscle electrical stimulation bioreactor to apply physiologically relevant electrical stimulation patterns to tissue-engineered muscles and monolayers in culture. A low-powered microcontroller and a DC-DC converter were used to power a pulse circuit that converted a 4.5 V input to outputs of up to 50 V, with pulse widths from 0.05 to 4 ms, and frequencies up to 100 Hz (with certain operational limitations). When two-dimensional cultures were stimulated at high frequencies (100 Hz), this resulted in an increase in the rate of protein synthesis (at 12 h, control [CTL] = 5.0 + or - 0.16; 10 Hz = 5.0 + or - 0.07; and 100 Hz = 5.5 + or - 0.13 fmol/min/mg) showing that this was an anabolic signal. When three-dimensional engineered muscles were stimulated at 0.1 ms and one or two times rheobase, stimulation improved force production (CTL = 0.07 + or - 0.009; 1.25 V/mm = 0.10 + or - 0.011; 2.5 V/mm = 0.14146 + or - 0.012; and 5 V/mm = 0.03756 + or - 0.008 kN/mm(2)) and excitability (CTL = 0.53 + or - 0.022; 1.25 V/mm = 0.44 + or - 0.025; 2.5 V/mm = 0.41 + or - 0.012; and 5 V/mm = 0.60 + or - 0.021 V/mm), suggesting enhanced maturation. Together, these data show that the physiology and function of muscles can be improved in vitro using a bioreactor that allows the control of pulse amplitude, pulse width, pulse frequency, and work-to-rest ratio.


Assuntos
Reatores Biológicos , Estimulação Elétrica/instrumentação , Músculo Esquelético/fisiologia , Engenharia Tecidual/instrumentação , Animais , Fenômenos Biomecânicos , Linhagem Celular , Camundongos , Biossíntese de Proteínas
13.
Brain Res ; 1302: 97-105, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19765551

RESUMO

A significant number of studies that evaluated tactile-pain interactions employed heat to evoke nociceptive responses. However, relatively few studies have examined the effects of non-noxious thermal stimulation on tactile discriminative capacity. In this study, the impact that non-noxious heat had on three features of tactile information processing capacity was evaluated: vibrotactile threshold, amplitude discriminative capacity, and adaptation. It was found that warming the skin made a significant improvement on a subject's ability to detect a vibrotactile stimulus, and although the subjects' capacities for discriminating between two amplitudes of vibrotactile stimulation did not change with skin heating, the impact that adapting or conditioning stimulation normally had on amplitude discrimination capacity was significantly attenuated by the change in temperature. These results suggested that although the improvements in tactile sensitivity that were observed could have been a result of enhanced peripheral activity, the changes in measures that reflect a decrease in the sensitization to repetitive stimulation are most likely centrally mediated. The authors speculate that these centrally mediated changes could be a reflection of a change in the balance of cortical excitation and inhibition.


Assuntos
Encéfalo/fisiologia , Temperatura Alta , Células Receptoras Sensoriais/fisiologia , Sensação Térmica/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Vias Aferentes/anatomia & histologia , Vias Aferentes/fisiologia , Encéfalo/anatomia & histologia , Feminino , Humanos , Masculino , Inibição Neural/fisiologia , Estimulação Física , Psicometria , Limiar Sensorial/fisiologia , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/fisiologia , Vibração , Adulto Jovem
14.
Gastroenterology ; 137(1): 53-61, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19328796

RESUMO

BACKGROUND & AIMS: The internal anal sphincter (IAS) is a specialized circular smooth muscle that maintains rectoanal continence. In vitro models are needed to study the pathophysiology of human IAS disorders. We bioengineered sphincteric rings from human IAS smooth muscle cells (SMC) and investigated their response to cholinergic stimulation as well as investigated whether protein kinase C (PKC) and Rho kinase signaling pathways remain functional. METHODS: 3-Dimensional bioengineered ring (3DBR) model of the human IAS was constructed from isolated human IAS SMC obtained from surgery. Contractile properties and force generation in response to acetylcholine, PKC inhibitor calphostin-C, Rho/ROCK inhibitor Y-27632, permeable Rho/ROCK inhibitor c3-exoenzyme, and PKC activator PdBU was measured. RESULTS: The human IAS 3DBR has the essential characteristics of physiologically functional IAS; it generated a spontaneous myogenic basal tone, and the constructs were able to relax in response to relaxants and contract in response to contractile agents. The constructs generated dose-dependent force in response to acetylcholine. Basal tone was significantly reduced by calphostin-C but not with Y-27632. Acetylcholine-induced force generation was also significantly reduced by calphostin-C but not with Y-27632. PdBU generated force that was equal in magnitude to acetylcholine. Thus, calphostin-C inhibited PdBU-induced force generation, whereas Y-27632 and c3 exoenzyme did not. CONCLUSIONS: These data indicate that basal tone and acetylcholine-induced force generation depend on signaling through the PKC pathway in human IAS; PKC-mediated force generation is independent of the Rho/ROCK pathway. This human IAS 3DBR model can be used to study the pathophysiology associated with IAS malfunctions.


Assuntos
Canal Anal/metabolismo , Contração Muscular , Relaxamento Muscular , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Engenharia Tecidual , Acetilcolina/metabolismo , Canal Anal/citologia , Canal Anal/efeitos dos fármacos , Canal Anal/enzimologia , Proteínas de Ligação a Calmodulina/metabolismo , Cavéolas/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Ativadores de Enzimas/farmacologia , Estudos de Viabilidade , Fibrina/metabolismo , Proteínas de Choque Térmico HSP27 , Humanos , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-alfa/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
15.
Biomed Eng Online ; 7: 12, 2008 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-18331644

RESUMO

BACKGROUND: The traditional two-point discrimination (TPD) test, a widely used tactile spatial acuity measure, has been criticized as being imprecise because it is based on subjective criteria and involves a number of non-spatial cues. The results of a recent study showed that as two stimuli were delivered simultaneously, vibrotactile amplitude discrimination became worse when the two stimuli were positioned relatively close together and was significantly degraded when the probes were within a subject's two-point limen. The impairment of amplitude discrimination with decreasing inter-probe distance suggested that the metric of amplitude discrimination could possibly provide a means of objective and quantitative measurement of spatial discrimination capacity. METHODS: A two alternative forced-choice (2AFC) tracking procedure was used to assess a subject's ability to discriminate the amplitude difference between two stimuli positioned at near-adjacent skin sites. Two 25 Hz flutter stimuli, identical except for a constant difference in amplitude, were delivered simultaneously to the hand dorsum. The stimuli were initially spaced 30 mm apart, and the inter-stimulus distance was modified on a trial-by-trial basis based on the subject's performance of discriminating the stimulus with higher intensity. The experiment was repeated via sequential, rather than simultaneous, delivery of the same vibrotactile stimuli. RESULTS: Results obtained from this study showed that the performance of the amplitude discrimination task was significantly degraded when the stimuli were delivered simultaneously and were near a subject's two-point limen. In contrast, subjects were able to correctly discriminate between the amplitudes of the two stimuli when they were sequentially delivered at all inter-probe distances (including those within the two-point limen), and improved when an adapting stimulus was delivered prior to simultaneously delivered stimuli. CONCLUSION: Subjects' capacity to discriminate the amplitude difference between two vibrotactile stimulations was degraded as the inter-stimulus distance approached the limit of their two-point spatial discriminative capacity. This degradation of spatial discriminative capacity lessened when an adapting stimulus was used. Performance of the task, as well as improvement on the task with adaptation, would most likely be impaired if the cortical information processing capacity of a subject or subject population were systemically altered, and thus, the methods described could be effective measures for use in clinical or clinical research applications.


Assuntos
Palpação/métodos , Exame Físico/métodos , Estimulação Física/métodos , Limiar Sensorial/fisiologia , Fenômenos Fisiológicos da Pele , Percepção Espacial/fisiologia , Tato/fisiologia , Discriminação Psicológica/fisiologia , Humanos , Vibração
16.
Tissue Eng ; 13(10): 2395-404, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17867927

RESUMO

A quantitative understanding of the bulk excitability of skeletal muscle tissues is important for the design of muscle tissue bioreactor systems, implantable muscle stimulators, and other systems where electrical pulses are employed to elicit contractions in muscle tissue both in vitro and in vivo. The purpose of the present study is to systematically compare the excitability of mammalian (rat) skeletal muscle under a range of conditions (including neonatal development, denervation, and chronic in vivo stimulation of denervated muscle) and of self-organized muscle tissue constructs engineered in vitro from both primary cells and cell lines. Excitability is represented by rheobase (R(50), units = V/mm) and chronaxie (C(50), units = microseconds) values, with lower values for each indicating greater excitability. Adult skeletal muscle is the most excitable (R(50) ~ 0.29, C(50) ~ 100); chronically denervated whole muscles (R(50) ~ 2.54, C(50) ~ 690) and muscle engineered in vitro from cell lines (C2C12 + 10T1/2) (R(50) ~ 1.93, C(50) ~ 416) have exceptionally low excitability; muscle engineered in vitro from primary myocytes (R(50) ~ 0.99, C(50) ~ 496) has excitability similar to that of day 14 neonatal rat muscle (R(50) ~ 0.65, C(50) ~ 435); stimulated-denervated muscles retain excellent excitability when chronically electrically stimulated (R(50) ~ 0.40, C(50) ~ 100); and neonatal rat muscle excitability improves during the first 6 weeks of development, steadily approaching that of adult muscle.


Assuntos
Envelhecimento/fisiologia , Estimulação Elétrica/métodos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Técnicas de Cultura de Tecidos/métodos , Animais , Ratos
17.
Ann Surg ; 245(1): 140-6, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17197977

RESUMO

OBJECTIVE: The purpose of this study is to measure abdominal wall myopathic histologic and mechanical changes during incisional herniation and its effect on incisional hernia repairs. SUMMARY BACKGROUND DATA: Unloaded skeletal muscles undergo characteristic atrophic changes, including change in fiber type composition, decreased cross-sectional area, and pathologic fibrosis. We hypothesize that these atrophic changes decrease muscle elastic properties and may contribute to the high laparotomy wound failure rate observed following incisional hernia repair. METHODS: A rat model of chronic incisional hernia formation was used. Failing midline laparotomy incisions developed into incisional hernias. Controls were uninjured and sham laparotomy (healed) groups. Internal oblique muscles were harvested for fiber typing, measurement of cross-sectional area, collagen deposition, and mechanical analysis. Mesh hernia repairs were performed on a second group of rats with chronic incisional hernias or acute anterior abdominal wall myofascial defects. RESULTS: The hernia group developed lateral abdominal wall shortening and oblique muscle atrophy. This was associated with a change in the distribution of oblique muscle fiber types, decreased cross-sectional area, and pathologic fibrosis consistent with myopathic disuse atrophy. These muscles exhibited significant decreased extensibility and increased stiffness. The healed (sham) laparotomy group expressed an intermediate phenotype between the uninjured and hernia groups. Recurrent hernia formation was most frequent in the chronic hernia model, and hernia repairs mechanically disrupted at a lower force compared with nonherniated abdominal walls. CONCLUSIONS: The internal oblique muscles of the abdominal wall express a pattern of changes consistent with those seen in chronically unloaded skeletal muscles. The internal oblique muscles become fibrotic during herniation, reducing abdominal wall compliance and increasing the transfer of load forces to the midline wound at the time of hernia repair.


Assuntos
Músculos Abdominais/patologia , Músculos Abdominais/fisiopatologia , Parede Abdominal/patologia , Parede Abdominal/fisiopatologia , Hérnia Ventral/patologia , Hérnia Ventral/fisiopatologia , Animais , Complacência (Medida de Distensibilidade) , Modelos Animais de Doenças , Fibrose , Hérnia Ventral/complicações , Laparotomia/efeitos adversos , Masculino , Atrofia Muscular/etiologia , Ratos , Ratos Sprague-Dawley
18.
Restor Neurol Neurosci ; 25(5-6): 601-10, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18334775

RESUMO

PURPOSE: Prolonged denervation of skeletal muscles results in atrophy and poor recovery of motor function following delayed reinnervation. Electrical stimulation reduces denervation atrophy. We hypothesized that electrical stimulation of denervated extensor digitorum longus (EDL) muscles during a prolonged period between nerve axotomy and opportunity for reinnervation by motoneurons after nerve-repair would enhance the recovery of muscle mass, force and motor-function. METHODS: The EDL muscles of rats were denervated for 3.5 months by peroneal nerve axotomy, then repaired with an end-to-end neurorrhaphy, and allowed to recover for 6.5 months. During the period of denervation, some of the rats received a protocol of electrical stimulation that had previously been shown to dramatically attenuate the effects of denervation atrophy through 4 months. Other experimental groups included unoperated control muscles, denervated muscles, and axotomy followed immediately by nerve-repair. Final evaluations included walking track analysis, maximum force measured in situ by indirect stimulation of the nerve, and muscle mass. RESULTS: The hypothesis was not supported. Electrical stimulation during the period of denervation did not enhance recovery of muscle mass, force or motor function. CONCLUSION: The primary factors that inhibited reinnervation and recovery following delayed reinnervation were not alleviated by the electrical stimulation during the period of muscle denervation.


Assuntos
Estimulação Elétrica/métodos , Músculo Esquelético/fisiopatologia , Atrofia Muscular/reabilitação , Recuperação de Função Fisiológica/efeitos da radiação , Análise de Variância , Animais , Axotomia/métodos , Locomoção , Masculino , Contração Muscular , Músculo Esquelético/efeitos da radiação , Atrofia Muscular/etiologia , Neuropatias Fibulares/complicações , Desempenho Psicomotor , Ratos , Recuperação de Função Fisiológica/fisiologia , Fatores de Tempo
19.
Surgery ; 140(1): 14-24, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16857438

RESUMO

BACKGROUND: An improved understanding of load-bearing soft tissue repair suggests that the mechanism for the improved outcomes after alloplastic incisional herniorrhaphy involves more than simple tissue replacement or material strength. We test the hypothesis that postrepair abdominal wall elastic properties are most predictive of successful abdominal wall reconstruction. METHODS: A rodent model of chronic incisional hernia formation was used. Midline incisional hernias were repaired primarily with suture (n = 24) or polypropylene mesh (n = 24). Rodents were sacrificed at serial postoperative time points over 60 days. Intact abdominal wall strips were cut perpendicular to the wound for tensiometric analysis. Biopsies of wound provisional matrix were obtained for biochemical analysis. RESULTS: Recurrent incisional hernia formation was significantly decreased in the mesh-repair group, compared with the suture-repair group (5/24 vs 14/24, P = .02). Mesh-repaired abdominal walls demonstrated significantly more elongation (P < .01) and less stiffness (P < .01). Toughness was equal between wounds, although the suture-repaired wounds had increased recovery of tensile strength (P < .01). There were no significant differences in collagen deposition after postoperative day 7. CONCLUSIONS: Mesh incisional herniorrhaphy increases abdominal wall elastic properties as measured by increased elongation and reduced stiffness. Increased abdominal wall elasticity after incisional hernia repair in turn results in lower recurrence rates.


Assuntos
Hérnia Ventral/cirurgia , Parede Abdominal/fisiopatologia , Parede Abdominal/cirurgia , Animais , Sequência de Bases , Fenômenos Biomecânicos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Elasticidade , Hérnia Ventral/fisiopatologia , Hérnia Ventral/prevenção & controle , Humanos , Masculino , Complicações Pós-Operatórias/fisiopatologia , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/cirurgia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Recidiva , Telas Cirúrgicas , Técnicas de Sutura , Cicatrização
20.
In Vitro Cell Dev Biol Anim ; 42(3-4): 75-82, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16759152

RESUMO

Previously, we have engineered three-dimensional (3-D) skeletal muscle constructs that generate force and display a myosin heavy-chain (MHC) composition of fetal muscle. The purpose of this study was to evaluate the functional characteristics of 3-D skeletal muscle constructs cocultured with fetal nerve explants. We hypothesized that coculture of muscle constructs with neural cells would produce constructs with increased force and adult MHC isoforms. Following introduction of embryonic spinal cord explants to a layer of confluent muscle cells, the neural tissue integrated with the cultured muscle cells to form 3-D muscle constructs with extensions. Immunohistochemical labeling indicated that the extensions were neural tissue and that the junctions between the nerve extensions and the muscle constructs contained clusters of acetylcholine receptors. Compared to muscles cultured without nerve explants, constructs formed from nerve- muscle coculture showed spontaneous contractions with an increase in frequency and force. Upon field stimulation, both twitch (2-fold) and tetanus (1.7-fold) were greater in the nerve-muscle coculture system. Contractions could be elicited by electrically stimulating the neural extensions, although smaller forces are produced than with field stimulation. Severing the extension eliminated the response to electrical stimulation, excluding field stimulation as a contributing factor. Nerve- muscle constructs showed a tendency to have higher contents of adult and lower contents of fetal MHC isoforms, but the differences were not significant. In conclusion, we have successfully engineered a 3-D nerve-muscle construct that displays functional neuromuscular junctions and can be electrically stimulated to contract via the neural extensions projecting from the construct.


Assuntos
Técnicas de Cocultura , Músculo Esquelético , Junção Neuromuscular/fisiologia , Nervos Periféricos , Técnicas de Cultura de Tecidos , Engenharia Tecidual , Animais , Células Cultivadas , Estimulação Elétrica , Feminino , Feto/anatomia & histologia , Feto/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Nervos Periféricos/anatomia & histologia , Nervos Periféricos/metabolismo , Gravidez , Ratos , Ratos Endogâmicos F344 , Medula Espinal/citologia , Células-Tronco/citologia , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA