Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(22): 6959-6966, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35604017

RESUMO

We report neutron reflectometry (NR) studies of polyethylene glycol (PEG)-tethered model lipid membranes at the solid-liquid interface and of cholera toxin's B-subunit (CTxB) binding to tethered membranes containing ganglioside GM1 receptors. First, tethered polymer brushes were formed by grafting silane-functionalized PEG lipopolymers to quartz from solution. Subsequent deposition of lipids by Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) resulted in a tethered bilayer structure separated from the solid support by a hydrated PEG layer. NR revealed that the tethers formed a highly hydrated polymer brush, uniformly separating the bilayer from the underlying solid substrate. Further, the lipid bilayer did not significantly perturb the brush's conformation relative to a free brush. Biological functionality of the tethered bilayers was verified by interacting CTxB, with ganglioside GM1 receptors incorporated into the bilayer. The surface coverage of CTxB bound to the lipid membrane, θCTB= 0.58 ± 0.08, was consistent with the coverage predicted for random sequential absorption, and toxin binding did not impact the membrane conformation.


Assuntos
Toxina da Cólera , Gangliosídeo G(M1) , Toxina da Cólera/metabolismo , Gangliosídeo G(M1)/metabolismo , Bicamadas Lipídicas/química , Polietilenoglicóis/química , Polímeros/química
2.
Rev Sci Instrum ; 92(2): 023306, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648099

RESUMO

Graphite intercalation compounds (GICs) are a group of layered materials that are suitable as monochromators for cold neutrons. KC24 is a particularly interesting compound in this regard as it features a large c-axis lattice spacing of 8.74 Å, high reflectivity, and the possibility to produce large crystals with mosaicity that matches the beam divergence of cold neutron guides. GICs can be synthesized with different levels of intercalation, known as the stage of the compounds. Each stage displays a specific d-spacing. Impure GIC-monochromators containing multiple stages produce mixing of neutron wavelengths, which complicates data analysis on neutron reflectometers. We discuss the implications of GIC crystal purity and stage contamination for neutron reflectometry and show how GIC crystals can be characterized by time-of-flight neutron diffraction providing an efficient and quantifiable measure of the reflected wavelength spectrum. This allows taking into account multiple wavelength contaminations and ascertains the robustness of reflectometry measurements.

3.
Sci Data ; 7(1): 163, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472045

RESUMO

High resolution X-ray nano-tomography experiments are often limited to a few tens of micrometer size volumes due to detector size. It is possible, through the use of multiple overlapping tomography scans, to produce a large area scan which can encompass a sample in its entirety. Mounting and positioning regions to be scanned is highly challenging and normally requires focused ion beam approaches. In this work we have imaged intact beetle scale cells mounted on the tip of a needle using a micromanipulator stage. Here we show X-ray holotomography data for single ultra-white scales from the beetles Lepidiota stigma (L. stigma) and Cyphochilus which exhibit the most effective scattering of white light in the literature. The final thresholded matrices represent a scan area of 25 × 70 × 362.5 µm and 25 × 67.5 × 235µm while maintaining a pixel resolution of 25 nm. This tomographic approach allowed the internal structure of the scales to be captured completely intact and undistorted by the sectioning required for traditional microscopy techniques.


Assuntos
Exoesqueleto/ultraestrutura , Besouros/ultraestrutura , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X , Animais
4.
Sci Rep ; 7(1): 4797, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684767

RESUMO

Enabling control over macromolecular ordering and the spatial distribution of structures formed via the mechanisms of molecular self-assembly is a challenge that could yield a range of new functional materials. In particular, using the self-assembly of minimalist peptides, to drive the incorporation of large complex molecules will allow a functionalization strategy for the next generation of biomaterial engineering. Here, for the first time, we show that co-assembly with increasing concentrations of a highly charged polysaccharide, fucoidan, the microscale ordering of Fmoc-FRGDF peptide fibrils and subsequent mechanical properties of the resultant hydrogel can be easily and effectively manipulated without disruption to the nanofibrillar structure of the assembly.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Oligopeptídeos/química , Polissacarídeos/química , Configuração de Carboidratos , Fluorenos/química , Humanos , Substâncias Macromoleculares , Teste de Materiais , Polissacarídeos/ultraestrutura , Reologia
5.
Langmuir ; 32(35): 9091-6, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27516185

RESUMO

We apply specular and off-specular neutron reflection at the hydrophobic silicon/water interface to check for evidence of nanoscopic air bubbles whose presence is claimed after an ad hoc procedure of solvent exchange. Nanobubbles and/or a depletion layer at the hydrophobic/water interface have long been discussed and generated a plethora of controversial scientific results. By combining neutron reflectometry (NR), off-specular reflectometry (OSS), and grazing incidence small angle neutron scattering (GISANS), we studied the interface between hydrophobized silicon and heavy water before and after saturation with nitrogen gas. Our specular reflectometry results can be interpreted by assuming a submolecular sized depletion layer and the off-specular measurements show no change with nitrogen super saturated water. This picture is consistent with the assumption that, following the solvent exchange, no additional nanobubbles are introduced at significant concentrations (if present at all). Furthermore, we discuss the results in terms of the maximum surface coverage of nanobubbles that could be present on the hydrophobic surface compatibly with the sensitivity limit of these techniques.

6.
Nanomedicine ; 12(5): 1397-407, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26961467

RESUMO

The local inflammatory environment of the cell promotes the growth of epithelial cancers. Therefore, controlling inflammation locally using a material in a sustained, non-steroidal fashion can effectively kill malignant cells without significant damage to surrounding healthy cells. A promising class of materials for such applications is the nanostructured scaffolds formed by epitope presenting minimalist self-assembled peptides; these are bioactive on a cellular length scale, while presenting as an easily handled hydrogel. Here, we show that the assembly process can distribute an anti-inflammatory polysaccharide, fucoidan, localized to the nanofibers within the scaffold to create a biomaterial for cancer therapy. We show that it supports healthy cells, while inducing apoptosis in cancerous epithelial cells, as demonstrated by the significant down-regulation of gene and protein expression pathways associated with epithelial cancer progression. Our findings highlight an innovative material approach with potential applications in local epithelial cancer immunotherapy and drug delivery.


Assuntos
Apoptose , Citocinas , Alicerces Teciduais , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica , Humanos , Hidrogéis , Nanofibras , Neoplasias Epiteliais e Glandulares
7.
Sci Rep ; 5: 18317, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26686280

RESUMO

Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes.


Assuntos
Plumas/ultraestrutura , Queratinas/metabolismo , Passeriformes/metabolismo , Pigmentação , Animais , Cor , Plumas/metabolismo , Microscopia Eletrônica de Transmissão , Passeriformes/anatomia & histologia , Raios Ultravioleta
8.
Biophys J ; 107(5): 1146-1155, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25185550

RESUMO

Globotriaosylceramide (Gb3), a glycosphingolipid found in the plasma membrane of animal cells, is the endocytic receptor of the bacterial Shiga toxin. Using x-ray reflectivity (XR) and grazing incidence x-ray diffraction (GIXD), lipid monolayers containing Gb3 were investigated at the air-water interface. XR probed Gb3 carbohydrate conformation normal to the interface, whereas GIXD precisely characterized Gb3's influence on acyl chain in-plane packing and area per molecule (APM). Two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), were used to study Gb3 packing in different lipid environments. Furthermore, the impact on monolayer structure of a naturally extracted Gb3 mixture was compared to synthetic Gb3 species with uniquely defined acyl chain structures. XR results showed that lipid environment and Gb3 acyl chain structure impact carbohydrate conformation with greater solvent accessibility observed for smaller phospholipid headgroups and long Gb3 acyl chains. In general, GIXD showed that Gb3 condensed phospholipid packing resulting in smaller APM than predicted by ideal mixing. Gb3's capacity to condense APM was larger for DSPC monolayers and exhibited different dependencies on acyl chain structure depending on the lipid environment. The interplay between Gb3-induced changes in lipid packing and the lipid environment's impact on carbohydrate conformation has broad implications for glycosphingolipid macromolecule recognition and ligand binding.


Assuntos
Triexosilceramidas/química , Ar , Animais , Configuração de Carboidratos , Eritrócitos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Pressão , Solventes/química , Propriedades de Superfície , Suínos , Água , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...