Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nat Med ; 30(1): 117-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38167935

RESUMO

Over 75% of malaria-attributable deaths occur in children under the age of 5 years. However, the first malaria vaccine recommended by the World Health Organization (WHO) for pediatric use, RTS,S/AS01 (Mosquirix), has modest efficacy. Complementary strategies, including monoclonal antibodies, will be important in efforts to eradicate malaria. Here we characterize the circulating B cell repertoires of 45 RTS,S/AS01 vaccinees and discover monoclonal antibodies for development as potential therapeutics. We generated >28,000 antibody sequences and tested 481 antibodies for binding activity and 125 antibodies for antimalaria activity in vivo. Through these analyses we identified correlations suggesting that sequences in Plasmodium falciparum circumsporozoite protein, the target antigen in RTS,S/AS01, may induce immunodominant antibody responses that limit more protective, but subdominant, responses. Using binding studies, mouse malaria models, biomanufacturing assessments and protein stability assays, we selected AB-000224 and AB-007088 for advancement as a clinical lead and backup. We engineered the variable domains (Fv) of both antibodies to enable low-cost manufacturing at scale for distribution to pediatric populations, in alignment with WHO's preferred product guidelines. The engineered clone with the optimal manufacturing and drug property profile, MAM01, was advanced into clinical development.


Assuntos
Anticorpos Monoclonais , Malária , Animais , Pré-Escolar , Humanos , Lactente , Camundongos , Anticorpos Monoclonais/uso terapêutico , Linfócitos B , Malária/prevenção & controle , Vacinas Antimaláricas
2.
Cell Rep ; 42(11): 113330, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38007690

RESUMO

IGHV3-33-encoded antibodies are prevalent in the human humoral response against the Plasmodium falciparum circumsporozoite protein (PfCSP). Among VH3-33 antibodies, cross-reactivity between PfCSP major repeat (NANP), minor (NVDP), and junctional (NPDP) motifs is associated with high affinity and potent parasite inhibition. However, the molecular basis of antibody cross-reactivity and the relationship with efficacy remain unresolved. Here, we perform an extensive structure-function characterization of 12 VH3-33 anti-PfCSP monoclonal antibodies (mAbs) with varying degrees of cross-reactivity induced by immunization of mice expressing a human immunoglobulin gene repertoire. We identify residues in the antibody paratope that mediate cross-reactive binding and delineate four distinct epitope conformations induced by antibody binding, with one consistently associated with high protective efficacy and another that confers comparably potent inhibition of parasite liver invasion. Our data show a link between molecular features of cross-reactive VH3-33 mAb binding to PfCSP and mAb potency, relevant for the development of antibody-based interventions against malaria.


Assuntos
Malária Falciparum , Malária , Camundongos , Humanos , Animais , Plasmodium falciparum/genética , Anticorpos Antiprotozoários , Proteínas de Protozoários/genética , Epitopos , Anticorpos Monoclonais , Malária Falciparum/parasitologia
3.
Gates Open Res ; 7: 107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38009106

RESUMO

Label-free techniques including Surface Plasmon Resonance (SPR) and Biolayer Interferometry (BLI) are biophysical tools widely used to collect binding kinetics data of bimolecular interactions. To efficiently analyze SPR and BLI binding kinetics data, we have built a new high throughput analysis tool named the TitrationAnalysis. It can be used as a package in the Mathematica scripting environment and ultilize the non-linear curve-fitting module of Mathematica for its core function. This tool can fit the binding time course data and estimate association and dissociation rate constants ( k a and k d respectively) for determining apparent dissociation constant ( K D) values. The high throughput fitting process is automatic, requires minimal knowledge on Mathematica scripting and can be applied to data from multiple label-free platforms. We demonstrate that the TitrationAnalysis is optimal to analyze antibody-antigen binding data acquired on Biacore T200 (SPR), Carterra LSA (SPR imaging) and ForteBio Octet Red384 (BLI) platforms. The k a, k d and K D values derived using TitrationAnalysis very closely matched the results from the commercial analysis software provided specifically for these instruments. Additionally, the TitrationAnalysis tool generates user-directed customizable results output that can be readily used in downstream Data Quality Control associated with Good Clinical Laboratory Practice operations. With the versatility in source of data input source and options of analysis result output, the TitrationAnalysis high throughput analysis tool offers investigators a powerful alternative in biomolecular interaction characterization.

4.
J Virol ; 97(12): e0107023, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38019013

RESUMO

IMPORTANCE: Multiple SARS-CoV-2 variants of concern have emerged and caused a significant number of infections and deaths worldwide. These variants of concern contain mutations that might significantly affect antigen-targeting by antibodies. It is therefore important to further understand how antibody binding and neutralization are affected by the mutations in SARS-CoV-2 variants. We highlighted how antibody epitope specificity can influence antibody binding to SARS-CoV-2 spike protein variants and neutralization of SARS-CoV-2 variants. We showed that weakened spike binding and neutralization of Beta (B.1.351) and Omicron (BA.1) variants compared to wildtype are not universal among the panel of antibodies and identified antibodies of a specific binding footprint exhibiting consistent enhancement of spike binding and retained neutralization to Beta variant. These data and analysis can inform how antigen-targeting by antibodies might evolve during a pandemic and prepare for potential future sarbecovirus outbreaks.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , COVID-19 , SARS-CoV-2/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Analyst ; 148(21): 5476-5485, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37767770

RESUMO

Rapid detection of biologicals is important for a range of applications such as medical screening and diagnostics. Antibodies are typically employed for biosensing with high sensitivity and selectivity but can take months to prepare. Here, we investigate electropolymerized molecularly imprinted polymers (E-MIPs), which are produced in minutes as alternative-antibody rapid biosensors for the selective recognition of model proteins bovine haemoglobin (BHb) and bovine serum albumin (BSA). We evaluated two disposable screen-printed electrodes (SPE) designated AT-Au and BT-Au based on their different annealing temperatures. E-MIPs for BHb demonstrated an imprinting factor of 146 : 1 at 1 nM and 12 : 1 at 0.1 nM, showing high effectiveness of E-MIPs compared to their control non-imprinted polymers. The BHb imprinted E-MIP, when tested against BSA as a non-target protein, gave a selectivity factor of 6 : 1 for BHb. Sensor sensitivity directly depended on the nature of the SPE, with AT-Au SPE demonstrating limits of detection in the sub-micromolar range typically achieved for MIPs, while BT-Au SPE exhibited sensitivity in the sub-nanomolar range for target protein. We attribute this to differences in electrode surface area between AT-Au and BT-Au SPEs. The E-MIPs were also tested in calf serum as a model biological medium. The BT-Au SPE MIPs detected the presence of target protein in <10 min with an LOD of 50 pM and LOQ of 100 pM, suggesting their suitability for protein determination in serum with minimal sample preparation. Using electrochemical impedance spectroscopy, we determine equilibrium dissociation constants (KD) for E-MIPs using the Hill-Langmuir adsorption model. KD of BHb E-MIP was determined to be 0.86 ± 0.11 nM.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Impressão Molecular/métodos , Polímeros/química , Hemoglobinas/química , Soroalbumina Bovina/química , Anticorpos
6.
Anal Biochem ; 679: 115263, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549723

RESUMO

Surface plasmon resonance (SPR) is an extensively used technique to characterize antigen-antibody interactions. Affinity measurements by SPR typically involve testing the binding of antigen in solution to monoclonal antibodies (mAbs) immobilized on a chip and fitting the kinetics data using 1:1 Langmuir binding model to derive rate constants. However, when it is necessary to immobilize antigens instead of the mAbs, a bivalent analyte (1:2) binding model is required for kinetics analysis. This model is lacking in data analysis packages associated with high throughput SPR instruments and the packages containing this model do not explore multiple local minima and parameter identifiability issues that are common in non-linear optimization. Therefore, we developed a method to use a system of ordinary differential equations for analyzing 1:2 binding kinetics data. Salient features of this method include a grid search on parameter initialization and a profile likelihood approach to determine parameter identifiability. Using this method we found a non-identifiable parameter in data set collected under the standard experimental design. A simulation-guided improved experimental design led to reliable estimation of all rate constants. The method and approach developed here for analyzing 1:2 binding kinetics data will be valuable for expeditious therapeutic antibody discovery research.


Assuntos
Reações Antígeno-Anticorpo , Antígenos , Funções Verossimilhança , Anticorpos Monoclonais/química , Ressonância de Plasmônio de Superfície/métodos , Cinética
7.
Rhinology ; 61(5): 412-420, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338824

RESUMO

BACKGROUND: Prospective studies of complications due to acute rhinosinusitis are lacking, bacterial cultures are hard to obtain and the role of airborne allergies, viruses and immunoglobulin levels are unclear. The aim was to investigate the role of bacteria, viruses, allergy and immunoglobulins in children hospitalized due to rhinosinusitis. METHODOLOGY: A prospective cohort study in Stockholm, Sweden, of children up to 18 years of age, hospitalized due to acute bacterial rhinosinusitis, from April 1st, 2017 to April 1st, 2020. RESULTS: Of 55 children included, 51% had a positive viral nasopharyngeal PCR and 29% had a positive allergy sensitization test. A higher percentage of middle meatus cultures were positive for bacterial growth compared to nasopharyngeal and displayed a wider array of bacteria. Dominating bacteria were S. milleri in surgical (7/12 cases), S. pyogenes in middle meatus (13/52 cases), and S. pyogenes and H. influenza in nasopharyngeal cultures (8/50 cases respectively). Nasal cultures were negative in 50% of surgical cases. An association was found between S. pyogenes and peak CRP; H. influenzae and peak CRP; S. pneumoniae and peak CRP; and possibly between M. catarrhalis and days of IV antibiotics. Further, an association between influenza A/B and S. pyogenes; a positive viral PCR and lower grade of complication and peak CRP; and a possible association between influenza virus and lower grade of complication. Allergy sensitization was possibly associated with a higher number of days with IV antibiotics. No immunoglobulin deficiencies were found. CONCLUSIONS: There seem to be differences in the patterns of bacterial growth in nasopharyngeal, middle meatus and surgical cultures in children with complications to acute bacterial rhinosinusitis. Presence of certain viruses and sensitization to airborne allergies seem to play a role in complications to acute bacterial rhinosinusitis in children.


Assuntos
Hipersensibilidade , Influenza Humana , Sinusite , Humanos , Criança , Estudos Prospectivos , Influenza Humana/tratamento farmacológico , Sinusite/complicações , Sinusite/diagnóstico , Sinusite/tratamento farmacológico , Bactérias , Antibacterianos/uso terapêutico , Streptococcus pneumoniae , Moraxella catarrhalis , Imunoglobulinas , Hipersensibilidade/tratamento farmacológico , Haemophilus influenzae
8.
Front Immunol ; 14: 1049673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875126

RESUMO

Diversity in specificity of polyclonal antibody (pAb) responses is extensively investigated in vaccine efficacy or immunological evaluations, but the heterogeneity in antibody avidity is rarely probed as convenient tools are lacking. Here we have developed a polyclonal antibodies avidity resolution tool (PAART) for use with label-free techniques, such as surface plasmon resonance and biolayer interferometry, that can monitor pAb-antigen interactions in real time to measure dissociation rate constant (kd ) for defining avidity. PAART utilizes a sum of exponentials model to fit the dissociation time-courses of pAb-antigens interactions and resolve multiple kd contributing to the overall dissociation. Each kd value of pAb dissociation resolved by PAART corresponds to a group of antibodies with similar avidity. PAART is designed to identify the minimum number of exponentials required to explain the dissociation course and guards against overfitting of data by parsimony selection of best model using Akaike information criterion. Validation of PAART was performed using binary mixtures of monoclonal antibodies of same specificity but differing in kd of the interaction with their epitope. We applied PAART to examine the heterogeneity in avidities of pAb from malaria and typhoid vaccinees, and individuals living with HIV-1 that naturally control the viral load. In many cases, two to three kd were dissected indicating the heterogeneity of pAb avidities. We showcase examples of affinity maturation of vaccine induced pAb responses at component level and enhanced resolution of heterogeneity in avidity when antigen-binding fragments (Fab) are used instead of polyclonal IgG antibodies. The utility of PAART can be manifold in examining circulating pAb characteristics and could inform vaccine strategies aimed to guide the host humoral immune response.


Assuntos
Anticorpos Monoclonais , Imunidade Humoral , Humanos , Afinidade de Anticorpos , Epitopos
9.
Database (Oxford) ; 20232023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763096

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seen multiple anti-SARS-CoV-2 antibodies being generated globally. It is difficult, however, to assemble a useful compendium of these biological properties if they are derived from experimental measurements performed at different sites under different experimental conditions. The Coronavirus Immunotherapeutic Consortium (COVIC) circumvents these issues by experimentally testing blinded antibodies side by side for several functional activities. To collect these data in a consistent fashion and make it publicly available, we established the COVIC database (COVIC-DB, https://covicdb.lji.org/). This database enables systematic analysis and interpretation of this large-scale dataset by providing a comprehensive view of various features such as affinity, neutralization, in vivo protection and effector functions for each antibody. Interactive graphs enable direct comparisons of antibodies based on select functional properties. We demonstrate how the COVIC-DB can be utilized to examine relationships among antibody features, thereby guiding the design of therapeutic antibody cocktails. Database URL  https://covicdb.lji.org/.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Anticorpos Antivirais , Imunoterapia
10.
Cell Rep ; 42(1): 112014, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36681898

RESUMO

The SARS-CoV-2 Omicron variant of concern (VoC) and its sublineages contain 31-36 mutations in spike and escape neutralization by most therapeutic antibodies. In a pseudovirus neutralization assay, 66 of the nearly 400 candidate therapeutics in the Coronavirus Immunotherapeutic Consortium (CoVIC) panel neutralize Omicron and multiple Omicron sublineages. Among natural immunoglobulin Gs (IgGs), especially those in the receptor-binding domain (RBD)-2 epitope community, nearly all Omicron neutralizers recognize spike bivalently, with both antigen-binding fragments (Fabs) simultaneously engaging adjacent RBDs on the same spike. Most IgGs that do not neutralize Omicron bind either entirely monovalently or have some (22%-50%) monovalent occupancy. Cleavage of bivalent-binding IgGs to Fabs abolishes neutralization and binding affinity, with disproportionate loss of activity against Omicron pseudovirus and spike. These results suggest that VoC-resistant antibodies overcome mutagenic substitution via avidity. Hence, vaccine strategies targeting future SARS-CoV-2 variants should consider epitope display with spacing and organization identical to trimeric spike.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Etnicidade , Epitopos , Anticorpos Antivirais , Anticorpos Neutralizantes , Testes de Neutralização
11.
PLoS Pathog ; 18(11): e1010999, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441829

RESUMO

Antibodies targeting the human malaria parasite Plasmodium falciparum circumsporozoite protein (PfCSP) can prevent infection and disease. PfCSP contains multiple central repeating NANP motifs; some of the most potent anti-infective antibodies against malaria bind to these repeats. Multiple antibodies can bind the repeating epitopes concurrently by engaging into homotypic Fab-Fab interactions, which results in the ordering of the otherwise largely disordered central repeat into a spiral. Here, we characterize IGHV3-33/IGKV1-5-encoded monoclonal antibody (mAb) 850 elicited by immunization of transgenic mice with human immunoglobulin loci. mAb 850 binds repeating NANP motifs with picomolar affinity, potently inhibits Plasmodium falciparum (Pf) in vitro and, when passively administered in a mouse challenge model, reduces liver burden to a similar extent as some of the most potent anti-PfCSP mAbs yet described. Like other IGHV3-33/IGKV1-5-encoded anti-NANP antibodies, mAb 850 primarily utilizes its HCDR3 and germline-encoded aromatic residues to recognize its core NANP motif. Biophysical and cryo-electron microscopy analyses reveal that up to 19 copies of Fab 850 can bind the PfCSP repeat simultaneously, and extensive homotypic interactions are observed between densely-packed PfCSP-bound Fabs to indirectly improve affinity to the antigen. Together, our study expands on the molecular understanding of repeat-induced homotypic interactions in the B cell response against PfCSP for potently protective mAbs against Pf infection.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Camundongos , Animais , Plasmodium falciparum , Microscopia Crioeletrônica , Malária Falciparum/parasitologia , Proteínas de Protozoários , Malária/parasitologia , Camundongos Transgênicos , Anticorpos Monoclonais , Anticorpos Antiprotozoários
12.
Anal Chim Acta ; 1206: 339777, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35473858

RESUMO

We investigate electropolymerized molecularly imprinted polymers (E-MIPs) for the selective recognition of SARS-CoV-2 whole virus. E-MIPs imprinted with SARS-CoV-2 pseudoparticles (pps) were electrochemically deposited onto screen printed electrodes by reductive electropolymerization, using the water-soluble N-hydroxmethylacrylamide (NHMA) as functional monomer and crosslinked with N,N'-methylenebisacrylamide (MBAm). E-MIPs for SARS-CoV-2 showed selectivity for template SARS-CoV-2 pps, with an imprinting factor of 3:1, and specificity (significance = 0.06) when cross-reacted with other respiratory viruses. E-MIPs detected the presence of SARS-CoV-2 pps in <10 min with a limit of detection of 4.9 log10 pfu/mL, suggesting their suitability for detection of SARS-CoV-2 with minimal sample preparation. Using electrochemical impedance spectroscopy (EIS) and principal component analysis (PCA), the capture of SARS-CoV-2 from real patient saliva samples was also evaluated. Fifteen confirmed COVID-19 positive and nine COVID-19 negative saliva samples were compared against the established loop-mediated isothermal nucleic acid amplification (LAMP) technique used by the UK National Health Service. EIS data demonstrated a PCA discrimination between positive and negative LAMP samples. A threshold real impedance signal (ZRe) ≫ 4000 Ω and a corresponding charge transfer resistance (RCT) ≫ 6000 Ω was indicative of absence of virus (COVID-19 negative) in agreement with values obtained for our control non-imprinted polymer control. A ZRe at or below a threshold value of 600 Ω with a corresponding RCT of <1200 Ω was indicative of a COVID-19 positive sample. The presence of virus was confirmed by treatment of E-MIPs with a SARS-CoV-2 specific monoclonal antibody.


Assuntos
COVID-19 , Polímeros Molecularmente Impressos , Anticorpos Antivirais , COVID-19/diagnóstico , Eletrodos , Humanos , SARS-CoV-2 , Saliva , Medicina Estatal
13.
Sci Immunol ; 6(64): eabj1181, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714686

RESUMO

Vaccine development to prevent Salmonella Typhi infections has accelerated over the past decade, resulting in licensure of new vaccines, which use the Vi polysaccharide (Vi PS) of the bacterium conjugated to an unrelated carrier protein as the active component. Antibodies elicited by these vaccines are important for mediating protection against typhoid fever. However, the characteristics of protective and functional Vi antibodies are unknown. In this study, we investigated the human antibody repertoire, avidity maturation, epitope specificity, and function after immunization with a single dose of Vi-tetanus toxoid conjugate vaccine (Vi-TT) and after a booster with plain Vi PS (Vi-PS). The Vi-TT prime induced an IgG1-dominant response, whereas the Vi-TT prime followed by the Vi-PS boost induced IgG1 and IgG2 antibody production. B cells from recipients who received both prime and boost showed evidence of convergence, with shared V gene usage and CDR3 characteristics. The detected Vi antibodies showed heterogeneous avidity ranging from 10 µM to 500 pM, with no evidence of affinity maturation after the boost. Vi-specific antibodies mediated Fc effector functions, which correlated with antibody dissociation kinetics but not with association kinetics. We identified antibodies induced by prime and boost vaccines that recognized subdominant epitopes, indicated by binding to the de­O-acetylated Vi backbone. These antibodies also mediated Fc-dependent functions, such as complement deposition and monocyte phagocytosis. Defining strategies on how to broaden epitope targeting for S. Typhi Vi and enriching for antibody Fc functions that protect against typhoid fever will advance the design of high-efficacy Vi vaccines for protection across diverse populations.


Assuntos
Vacinas Bacterianas/imunologia , Salmonella typhi/imunologia , Adulto , Formação de Anticorpos/imunologia , Feminino , Humanos , Masculino , Febre Tifoide/imunologia , Vacinação
14.
Science ; 374(6566): 472-478, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34554826

RESUMO

Antibody-based therapeutics and vaccines are essential to combat COVID-19 morbidity and mortality after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple mutations in SARS-CoV-2 that could impair antibody defenses propagated in human-to-human transmission and spillover or spillback events between humans and animals. To develop prevention and therapeutic strategies, we formed an international consortium to map the epitope landscape on the SARS-CoV-2 spike protein, defining and structurally illustrating seven receptor binding domain (RBD)­directed antibody communities with distinct footprints and competition profiles. Pseudovirion-based neutralization assays reveal spike mutations, individually and clustered together in variants, that affect antibody function among the communities. Key classes of RBD-targeted antibodies maintain neutralization activity against these emerging SARS-CoV-2 variants. These results provide a framework for selecting antibody treatment cocktails and understanding how viral variants might affect antibody therapeutic efficacy.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Mapeamento de Epitopos , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Antígenos Virais/química , Antígenos Virais/imunologia , COVID-19/terapia , Humanos , Epitopos Imunodominantes/química , Ligação Proteica , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química
15.
NPJ Vaccines ; 6(1): 110, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462438

RESUMO

RTS,S/AS01 is an advanced pre-erythrocytic malaria vaccine candidate with demonstrated vaccine efficacy up to 86.7% in controlled human malaria infection (CHMI) studies; however, reproducible immune correlates of protection (CoP) are elusive. To identify candidates of humoral correlates of vaccine mediated protection, we measured antibody magnitude, subclass, and avidity for Plasmodium falciparum (Pf) circumsporozoite protein (CSP) by multiplex assays in two CHMI studies with varying RTS,S/AS01B vaccine dose and timing regimens. Central repeat (NANP6) IgG1 magnitude correlated best with protection status in univariate analyses and was the most predictive for protection in a multivariate model. NANP6 IgG3 magnitude, CSP IgG1 magnitude, and total serum antibody dissociation phase area-under-the-curve for NANP6, CSP, NPNA3, and N-interface binding were also associated with protection status in the regimen adjusted univariate analysis. Identification of multiple immune response features that associate with protection status, such as antibody subclasses, fine specificity and avidity reported here may accelerate development of highly efficacious vaccines against P. falciparum.

16.
Int J Pediatr Otorhinolaryngol ; 150: 110866, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34416439

RESUMO

BACKGROUND: There are few population-based studies of complications due to acute rhinosinusitis in children. The aim was to clarify the admission and complication rate and analyze bacterial cultures in children five to 18 years old in Stockholm, Sweden. METHODS: This was a population-based observational cohort study with retrospectively collected data from individual medical records, from 1 July 2003 to 30 June 2016 in Stockholm, Sweden. Hospital admissions of children with a discharge diagnosis of rhinosinusitis and related complications were reviewed. RESULTS: Incidence of admission due to acute rhinosinusitis was 7.8 per 100 000 children per year (boys 9.2, girls 6.2) and 61% of the admitted children were boys. A severe - postseptal orbital, intracranial or osseous - complication, was present in 34% of admissions (postseptal orbital 28%, intracranial 6%, osseous 4%), resulting in an incidence of 2.6 severe complications per 100 000 children per year (boys 3.6, girls 1.6). Orbital preseptal cellulitis was present in 88% of admissions. Incidence of surgery was 1.3 per 100 000 per year (boys 1.8, girls 0.8) and the percentage of admitted children that had surgery increased with age. S. pyogenes was the most common pathogen found in the whole cohort (29 admissions), while S. milleri was the most common pathogen found among the children with severe complication and surgery. CONCLUSIONS: There is a relative high risk of severe complications in children between five to 18 years that are admitted due to acute rhinosinusitis. There is a need for prospective studies to further analyze the pathogens involved in complications due to acute rhinosinusitis.


Assuntos
Celulite Orbitária , Doenças Orbitárias , Rinite , Sinusite , Doença Aguda , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Estudos Retrospectivos , Rinite/epidemiologia , Sinusite/complicações , Sinusite/epidemiologia , Suécia/epidemiologia
17.
Front Big Data ; 4: 672460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34212134

RESUMO

RTS,S/AS01 (GSK) is the world's first malaria vaccine. However, despite initial efficacy of almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper understanding of the immune features that contribute to RTS,S/AS01-mediated protection could be beneficial for further vaccine development. In two recent controlled human malaria infection (CHMI) trials of the RTS,S/AS01 vaccine in malaria-naïve adults, MAL068 and MAL071, vaccine efficacy against patent parasitemia ranged from 44% to 87% across studies and arms (each study included a standard RTS,S/AS01 arm with three vaccine doses delivered in four-week-intervals, as well as an alternative arm with a modified version of this regimen). In each trial, RTS,S/AS01 immunogenicity was interrogated using a broad range of immunological assays, assessing cellular and humoral immune parameters as well as gene expression. Here, we used a predictive modeling framework to identify immune biomarkers measured at day-of-challenge that could predict sterile protection against malaria infection. Using cross-validation on MAL068 data (either the standard RTS,S/AS01 arm alone, or across both the standard RTS,S/AS01 arm and the alternative arm), top-performing univariate models identified variables related to Fc effector functions and titer of antibodies that bind to the central repeat region (NANP6) of CSP as the most predictive variables; all NANP6-related variables consistently associated with protection. In cross-study prediction analyses of MAL071 outcomes (the standard RTS,S/AS01 arm), top-performing univariate models again identified variables related to Fc effector functions of NANP6-targeting antibodies as highly predictive. We found little benefit-with this dataset-in terms of improved prediction accuracy in bivariate models vs. univariate models. These findings await validation in children living in malaria-endemic regions, and in vaccinees administered a fourth RTS,S/AS01 dose. Our findings support a "quality as well as quantity" hypothesis for RTS,S/AS01-elicited antibodies against NANP6, implying that malaria vaccine clinical trials should assess both titer and Fc effector functions of anti-NANP6 antibodies.

18.
Sci Rep ; 11(1): 5318, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674699

RESUMO

Plasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Animais , Linhagem Celular , Feminino , Hepatócitos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células
19.
Front Immunol ; 12: 670561, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003053

RESUMO

Broadly neutralizing antibodies (bNAbs), known to mediate immune control of HIV-1 infection, only develop in a small subset of HIV-1 infected individuals. Despite being traditionally associated with patients with high viral loads, bNAbs have also been observed in therapy naïve HIV-1+ patients naturally controlling virus replication [Virus Controllers (VCs)]. Thus, dissecting the bNAb response in VCs will provide key information about what constitutes an effective humoral response to natural HIV-1 infection. In this study, we identified a polyclonal bNAb response to natural HIV-1 infection targeting CD4 binding site (CD4bs), V3-glycan, gp120-gp41 interface and membrane-proximal external region (MPER) epitopes on the HIV-1 envelope (Env). The polyclonal antiviral antibody (Ab) response also included antibody-dependent cellular phagocytosis of clade AE, B and C viruses, consistent with both the Fv and Fc domain contributing to function. Sequence analysis of envs from one of the VCs revealed features consistent with potential immune pressure and virus escape from V3-glycan targeting bNAbs. Epitope mapping of the polyclonal bNAb response in VCs with bNAb activity highlighted the presence of gp120-gp41 interface and CD4bs antibody classes with similar binding profiles to known potent bNAbs. Thus, these findings reveal the induction of a broad and polyfunctional humoral response in VCs in response to natural HIV-1 infection.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Antígenos CD4/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Fragmentos de Peptídeos/imunologia , Sobreviventes , Viremia/imunologia , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Antígenos CD4/metabolismo , Contagem de Linfócito CD4 , Mapeamento de Epitopos , Feminino , Genes env , Antígenos HLA-B/imunologia , Humanos , Evasão da Resposta Imune , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos de Imunoglobulinas/imunologia , Masculino , Modelos Moleculares , Fagocitose , Domínios Proteicos , Proteínas Recombinantes/imunologia , Carga Viral
20.
J Exp Med ; 218(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33180929

RESUMO

Typhoid Vi vaccines have been shown to be efficacious in children living in endemic regions; however, a widely accepted correlate of protection remains to be established. We applied a systems serology approach to identify Vi-specific serological correlates of protection using samples obtained from participants enrolled in an experimental controlled human infection study. Participants were vaccinated with Vi-tetanus toxoid conjugate (Vi-TT) or unconjugated Vi-polysaccharide (Vi-PS) vaccines and were subsequently challenged with Salmonella Typhi bacteria. Multivariate analyses identified distinct protective signatures for Vi-TT and Vi-PS vaccines in addition to shared features that predicted protection across both groups. Vi IgA quantity and avidity correlated with protection from S. Typhi infection, whereas higher fold increases in Vi IgG responses were associated with reduced disease severity. Targeted antibody-mediated functional responses, particularly neutrophil phagocytosis, were also identified as important components of the protective signature. These humoral markers could be used to evaluate and develop efficacious Vi-conjugate vaccines and assist with accelerating vaccine availability to typhoid-endemic regions.


Assuntos
Febre Tifoide/imunologia , Vacinas Tíficas-Paratíficas/imunologia , Vacinas Conjugadas/imunologia , Adulto , Carga Bacteriana , Humanos , Imunidade Humoral , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Fatores de Tempo , Febre Tifoide/prevenção & controle , Vacinas Tíficas-Paratíficas/farmacologia , Vacinas Conjugadas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...