Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 82019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30990168

RESUMO

Cancer cell metabolism is heavily influenced by microenvironmental factors, including nutrient availability. Therefore, knowledge of microenvironmental nutrient levels is essential to understand tumor metabolism. To measure the extracellular nutrient levels available to tumors, we utilized quantitative metabolomics methods to measure the absolute concentrations of >118 metabolites in plasma and tumor interstitial fluid, the extracellular fluid that perfuses tumors. Comparison of nutrient levels in tumor interstitial fluid and plasma revealed that the nutrients available to tumors differ from those present in circulation. Further, by comparing interstitial fluid nutrient levels between autochthonous and transplant models of murine pancreatic and lung adenocarcinoma, we found that tumor type, anatomical location and animal diet affect local nutrient availability. These data provide a comprehensive characterization of the nutrients present in the tumor microenvironment of widely used models of lung and pancreatic cancer and identify factors that influence metabolite levels in tumors.


Assuntos
Líquido Extracelular/química , Neoplasias/patologia , Nutrientes/análise , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Feminino , Xenoenxertos/patologia , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Plasma/química
2.
Cell Metab ; 29(6): 1410-1421.e4, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905671

RESUMO

Tumors exhibit altered metabolism compared to normal tissues. Many cancers upregulate expression of serine synthesis pathway enzymes, and some tumors exhibit copy-number gain of the gene encoding the first enzyme in the pathway, phosphoglycerate dehydrogenase (PHGDH). However, whether increased serine synthesis promotes tumor growth and how serine synthesis benefits tumors is controversial. Here, we demonstrate that increased PHGDH expression promotes tumor progression in mouse models of melanoma and breast cancer, human tumor types that exhibit PHGDH copy-number gain. We measure circulating serine levels and find that PHGDH expression is necessary to support cell proliferation at lower physiological serine concentrations. Increased dietary serine or high PHGDH expression is sufficient to increase intracellular serine levels and support faster tumor growth. Together, these data suggest that physiological serine availability restrains tumor growth and argue that tumors arising in serine-limited environments acquire a fitness advantage by upregulating serine synthesis pathway enzymes.


Assuntos
Proliferação de Células , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Serina/biossíntese , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Neoplasias/genética , Serina/metabolismo
3.
Nature ; 558(7711): 600-604, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925948

RESUMO

Malignancy is accompanied by changes in the metabolism of both cells and the organism1,2. Pancreatic ductal adenocarcinoma (PDAC) is associated with wasting of peripheral tissues, a metabolic syndrome that lowers quality of life and has been proposed to decrease survival of patients with cancer3,4. Tissue wasting is a multifactorial disease and targeting specific circulating factors to reverse this syndrome has been mostly ineffective in the clinic5,6. Here we show that loss of both adipose and muscle tissue occurs early in the development of pancreatic cancer. Using mouse models of PDAC, we show that tumour growth in the pancreas but not in other sites leads to adipose tissue wasting, suggesting that tumour growth within the pancreatic environment contributes to this wasting phenotype. We find that decreased exocrine pancreatic function is a driver of adipose tissue loss and that replacement of pancreatic enzymes attenuates PDAC-associated wasting of peripheral tissues. Paradoxically, reversal of adipose tissue loss impairs survival in mice with PDAC. When analysing patients with PDAC, we find that depletion of adipose and skeletal muscle tissues at the time of diagnosis is common, but is not associated with worse survival. Taken together, these results provide an explanation for wasting of adipose tissue in early PDAC and suggest that early loss of peripheral tissue associated with pancreatic cancer may not impair survival.


Assuntos
Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Insuficiência Pancreática Exócrina/etiologia , Insuficiência Pancreática Exócrina/metabolismo , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/patologia , Animais , Composição Corporal , Modelos Animais de Doenças , Progressão da Doença , Insuficiência Pancreática Exócrina/patologia , Feminino , Masculino , Camundongos , Neoplasias Pancreáticas/metabolismo
4.
Methods Mol Biol ; 764: 215-22, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21748643

RESUMO

Cultured endothelial cells are renowned for being difficult to transfect, whether for the purpose of exogenous over-expression of plasmid DNA or for genetic knockdown via silencing RNA. Therefore, optimal conditions are absolutely necessary for achieving relatively high transfection efficiency coupled with low cellular toxicity in endothelial cells. This chapter will detail an optimized protocol that has been shown to knockdown gene expression using siRNA in primary cultures of human umbilical vein endothelial cells (HUVECs) - perhaps the most widely utilized endothelial cell line for vascular research. While developed for optimal siRNA transfection of HUVECs, aspects of this protocol can be empirically modified to yield efficient siRNA transfection in most other cell lines.


Assuntos
Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes/métodos , RNA Interferente Pequeno/farmacologia , Veias Umbilicais/citologia , Quinases Associadas a rho/antagonistas & inibidores , Células Endoteliais/citologia , Feminino , Corantes Fluorescentes/análise , Expressão Gênica/efeitos dos fármacos , Humanos , Interferência de RNA/efeitos dos fármacos , RNA Mensageiro/análise , RNA Interferente Pequeno/metabolismo , Transfecção , Veias Umbilicais/metabolismo , Quinases Associadas a rho/metabolismo
5.
Int J Oncol ; 37(5): 1297-305, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20878077

RESUMO

The role of the RhoA/Rho kinase (ROCK) signaling pathway in cell survival remains a very controversial issue, with its activation being pro-apoptotic in many cell types and anti-apoptotic in others. To test if ROCK inhibition contributes to tumor cell survival or death following chemotherapy, we treated cisplatin damaged neuroblastoma cells with a pharmacological ROCK inhibitor (Y27632) or sham, and monitored cell survival, accumulation of a chemoresistant phenotype, and in vivo tumor formation. Additionally, we assayed if ROCK inhibition altered the expression of genes known to be involved in cisplatin resistance. Our studies indicate that ROCK inhibition results in increased cell survival, acquired chemoresistance, and enhanced tumor survival following cisplatin cytotoxicity, due in part to altered expression of cisplatin resistance genes. These findings suggest that ROCK inhibition in combination with cisplatin chemotherapy may lead to enhanced tumor chemoresistance in neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neuroblastoma/metabolismo , Transdução de Sinais/fisiologia , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma/genética , Piridinas/farmacologia , Quinases Associadas a rho/genética
6.
FASEB J ; 24(9): 3186-95, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20400538

RESUMO

The small GTPase RhoA and its downstream effectors, ROCK1 and ROCK2, regulate a number of cellular processes, including cell motility, proliferation, survival, and permeability. Pharmacological inhibitors of the Rho pathway reportedly block angiogenesis; however, the molecular details of this inhibition are largely unknown. We demonstrate that vascular endothelial growth factor-A (VEGF) rapidly induces RhoA activation in endothelial cells (ECs). Moreover, the pharmacological inhibition of ROCK1/2 using 10 microM Y-27632 (the IC(50) for this compound in ECs) strongly disrupts vasculogenesis in pluripotent embryonic stem cell cultures, VEGF-mediated regenerative angiogenesis in ex vivo retinal explants, and VEGF-mediated in vitro EC tube formation. Furthermore, using small interfering RNA knockdown and mouse heterozygote knockouts of ROCK1 and ROCK2, we provide data indicating that VEGF-driven angiogenesis is largely mediated through ROCK2. These data demonstrate that Rho/ROCK signaling is an important mediator in a number of angiogenic processes, including EC migration, survival, and cell permeability, and suggest that Rho/ROCK inhibition may prove useful for the treatment of angiogenesis-related disorders.


Assuntos
Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/farmacologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Amidas/farmacologia , Animais , Apoptose , Western Blotting , Bovinos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Microscopia de Fluorescência , Piridinas/farmacologia , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Quinases Associadas a rho/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA