Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 405, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38750420

RESUMO

BACKGROUND: In plants, epigenetic stress memory has so far been found to be largely transient. Here, we wanted to assess the heritability of heat stress-induced epigenetic and transcriptomic changes following woodland strawberry (Fragaria vesca) reproduction. Strawberry is an ideal model to study epigenetic inheritance because it presents two modes of reproduction: sexual (self-pollinated plants) and asexual (clonally propagated plants named daughter plants). Taking advantage of this model, we investigated whether heat stress-induced DNA methylation changes can be transmitted via asexual reproduction. RESULTS: Our genome-wide study provides evidence for stress memory acquisition and maintenance in F. vesca. We found that specific DNA methylation marks or epimutations are stably transmitted over at least three asexual generations. Some of the epimutations were associated with transcriptional changes after heat stress. CONCLUSION: Our findings show that the strawberry methylome and transcriptome respond with a high level of flexibility to heat stress. Notably, independent plants acquired the same epimutations and those were inherited by their asexual progenies. Overall, the asexual progenies can retain some information in the genome of past stresses encountered by their progenitors. This molecular memory, also documented at the transcriptional level, might be involved in functional plasticity and stress adaptation. Finally, these findings may contribute to novel breeding approaches for climate-ready plants.


Assuntos
Metilação de DNA , Epigênese Genética , Fragaria , Resposta ao Choque Térmico , Transcriptoma , Fragaria/genética , Fragaria/fisiologia , Resposta ao Choque Térmico/genética , Epigenômica , Regulação da Expressão Gênica de Plantas , Reprodução Assexuada/genética
2.
J Exp Bot ; 74(20): 6306-6320, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37386925

RESUMO

Fruits of Fragaria species usually have an appealing bright red color due to the accumulation of anthocyanins, water-soluble flavonoid pigments. Octoploid cultivated strawberry (Fragaria × ananassa) is a major horticultural crop for which fruit color and associated nutritional value are main breeding targets. Great diversity in fruit color intensity and pattern is observed not only in cultivated strawberry but also in wild relatives such as its octoploid progenitor F. chiloensis or the diploid woodland strawberry F. vesca, a model for fruit species in the Rosaceae. This review examines our understanding of fruit color formation in strawberry and how ongoing developments will advance it. Natural variations of fruit color as well as color changes during fruit development or in response to several cues have been used to explore the anthocyanin biosynthetic pathway and its regulation. So far, the successful identification of causal genetic variants has been largely driven by the availability of high-throughput genotyping tools and high-quality reference genomes of F. vesca and F. × ananassa. The current completion of haplotype-resolved genomes of F. × ananassa combined with QTL mapping will accelerate the exploitation of the untapped genetic diversity of fruit color and help translate the findings into strawberry improvement.


Assuntos
Antocianinas , Fragaria , Antocianinas/genética , Antocianinas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Melhoramento Vegetal , Flavonoides/metabolismo
3.
J Exp Bot ; 74(12): 3595-3612, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37133320

RESUMO

Plant architecture plays a major role in flowering and therefore in crop yield. Attempts to visualize and analyse strawberry plant architecture have been few to date. Here, we developed open-source software combining two- and three-dimensional representations of plant development over time along with statistical methods to explore the variability in spatio-temporal development of plant architecture in cultivated strawberry. We applied this software to six seasonal strawberry varieties whose plants were exhaustively described monthly at the node scale. Results showed that the architectural pattern of the strawberry plant is characterized by a decrease of the module complexity between the zeroth-order module (primary crown) and higher-order modules (lateral branch crowns and extension crowns). Furthermore, for each variety, we could identify traits with a central role in determining yield, such as date of appearance and number of branches. By modeling the spatial organization of axillary meristem fate on the zeroth-order module using a hidden hybrid Markov/semi-Markov mathematical model, we further identified three zones with different probabilities of production of branch crowns, dormant buds, or stolons. This open-source software will be of value to the scientific community and breeders in studying the influence of environmental and genetic cues on strawberry architecture and yield.


Assuntos
Fragaria , Inflorescência , Fragaria/genética , Desenvolvimento Vegetal , Meristema , Análise Espaço-Temporal
4.
Hortic Res ; 10(3): uhad006, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938573

RESUMO

Strawberry (Fragaria × ananassa) fruits are an excellent source of L-ascorbic acid (AsA), a powerful antioxidant for plants and humans. Identifying the genetic components underlying AsA accumulation is crucial for enhancing strawberry nutritional quality. Here, we unravel the genetic architecture of AsA accumulation using an F1 population derived from parental lines 'Candonga' and 'Senga Sengana', adapted to distinct Southern and Northern European areas. To account for environmental effects, the F1 and parental lines were grown and phenotyped in five locations across Europe (France, Germany, Italy, Poland and Spain). Fruit AsA content displayed normal distribution typical of quantitative traits and ranged five-fold, with significant differences among genotypes and environments. AsA content in each country and the average in all of them was used in combination with 6,974 markers for quantitative trait locus (QTL) analysis. Environmentally stable QTLs for AsA content were detected in linkage group (LG) 3A, LG 5A, LG 5B, LG 6B and LG 7C. Candidate genes were identified within stable QTL intervals and expression analysis in lines with contrasting AsA content suggested that GDP-L-Galactose Phosphorylase FaGGP(3A), and the chloroplast-located AsA transporter gene FaPHT4;4(7C) might be the underlying genetic factors for QTLs on LG 3A and 7C, respectively. We show that recessive alleles of FaGGP(3A) inherited from both parental lines increase fruit AsA content. Furthermore, expression of FaGGP(3A) was two-fold higher in lines with high AsA. Markers here identified represent a useful resource for efficient selection of new strawberry cultivars with increased AsA content.

5.
Hortic Res ; 9: uhac174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204205

RESUMO

Environmental stresses can result in a wide range of physiological and molecular responses in plants. These responses can also impact epigenetic information in genomes, especially at the level of DNA methylation (5-methylcytosine). DNA methylation is the hallmark heritable epigenetic modification and plays a key role in silencing transposable elements (TEs). Although DNA methylation is an essential epigenetic mechanism, fundamental aspects of its contribution to stress responses and adaptation remain obscure. We investigated epigenome dynamics of wild strawberry (Fragaria vesca) in response to variable ecologically relevant environmental conditions at the DNA methylation level. F. vesca methylome responded with great plasticity to ecologically relevant abiotic and hormonal stresses. Thermal stress resulted in substantial genome-wide loss of DNA methylation. Notably, all tested stress conditions resulted in marked hot spots of differential DNA methylation near centromeric or pericentromeric regions, particularly in the non-symmetrical DNA methylation context. Additionally, we identified differentially methylated regions (DMRs) within promoter regions of transcription factor (TF) superfamilies involved in plant stress-response and assessed the effects of these changes on gene expression. These findings improve our understanding on stress-response at the epigenome level by highlighting the correlation between DNA methylation, TEs and gene expression regulation in plants subjected to a broad range of environmental stresses.

6.
Plant J ; 111(5): 1238-1251, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35751152

RESUMO

Fresh berries are a popular and important component of the human diet. The demand for high-quality berries and sustainable production methods is increasing globally, challenging breeders to develop modern berry cultivars that fulfill all desired characteristics. Since 1994, research projects have characterized genetic resources, developed modern tools for high-throughput screening, and published data in publicly available repositories. However, the key findings of different disciplines are rarely linked together, and only a limited range of traits and genotypes has been investigated. The Horizon2020 project BreedingValue will address these challenges by studying a broader panel of strawberry, raspberry and blueberry genotypes in detail, in order to recover the lost genetic diversity that has limited the aroma and flavor intensity of recent cultivars. We will combine metabolic analysis with sensory panel tests and surveys to identify the key components of taste, flavor and aroma in berries across Europe, leading to a high-resolution map of quality requirements for future berry cultivars. Traits linked to berry yields and the effect of environmental stress will be investigated using modern image analysis methods and modeling. We will also use genetic analysis to determine the genetic basis of complex traits for the development and optimization of modern breeding technologies, such as molecular marker arrays, genomic selection and genome-wide association studies. Finally, the results, raw data and metadata will be made publicly available on the open platform Germinate in order to meet FAIR data principles and provide the basis for sustainable research in the future.


Assuntos
Fragaria , Frutas , Fragaria/genética , Frutas/genética , Frutas/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Melhoramento Vegetal , Desenvolvimento Sustentável
7.
Front Plant Sci ; 13: 869655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371183

RESUMO

Fruit colour is central to the sensorial and nutritional quality of strawberry fruit and is therefore a major target in breeding programmes of the octoploid cultivated strawberry (Fragaria × ananassa). The red colour of the fruit is caused by the accumulation of anthocyanins, which are water-soluble flavonoids. To facilitate molecular breeding, here we have mapped with high resolution fruit colour quantitative trait loci (QTLs) (COLOUR, scored visually as in selection programmes) and associated flavonoid metabolic QTLs (5 anthocyanins compounds together with 8 flavonols and flavan-3-ols) to specific subgenomes of cultivated strawberry. Two main colour-related QTLs were located on the LG3A linkage group (Fragaria vesca subgenome). Genetic mapping, transcriptome analysis and whole genome sequencing enabled the detection of a homoeo-allelic variant of ANTHOCYANIDIN REDUCTASE (ANR) underlying the major male M3A COLOUR and pelargonidin-3-glucoside (PgGs) QTLs (up to ∼20% of explained variance). Consistent with previously published functional studies, ANR transcript abundance was inversely related with PgGs content in contrasted progeny individuals. Genetic segregation analyses further indicated that a molecular marker designed using an 18 bp deletion found in the 5'UTR of the candidate ANR homoeo-allelic variant is effective in identifying genotypes with intense red fruit colour. Our study provides insights into the genetic and molecular control of colour-related traits in strawberry and further defines a genetic marker for marker-assisted selection of new strawberry varieties with improved colour. The QTLs detected and the underlying candidate genes are different from those described to date, emphasising the importance of screening a wide diversity of genetic resources in strawberry.

8.
New Phytol ; 232(1): 372-387, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34131919

RESUMO

Plant architecture is central in determining crop yield. In the short-day species strawberry, a crop vegetatively propagated by daughter-plants produced by stolons, fruit yield is further dependent on the trade-off between sexual reproduction (fruits) and asexual reproduction (daughter-plants). Both are largely dependent on meristem identity, which establishes the development of branches, stolons and inflorescences. Floral initiation and plant architecture are modulated by the balance between two related proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). We explored in woodland strawberry the role of the uncharacterised FveFT2 and FveFT3 genes and of the floral repressor FveTFL1 through gene expression analyses, grafting and genetic transformation (overexpression and gene editing). We demonstrate the unusual properties of these genes. FveFT2 is a nonphotoperiodic florigen permitting short-day (SD) flowering and FveTFL1 is the long-hypothesised long-day systemic antiflorigen that contributes, together with FveFT2, to the photoperiodic regulation of flowering. We additionally show that FveFT3 is not a florigen but promotes plant branching when overexpressed, that is likely to be through changing axillary meristem fate, therefore resulting in a 3.5-fold increase in fruit yield at the expense of stolons. We show that our findings can be translated into improvement of cultivated strawberry in which FveFT2 overexpression significantly accelerates flowering.


Assuntos
Florígeno , Fragaria , Florígeno/metabolismo , Flores/genética , Flores/metabolismo , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodução , Estações do Ano
10.
J Agric Food Chem ; 68(25): 6927-6939, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32469530

RESUMO

Flavonoids are products from specialized metabolism that contribute to fruit sensorial (color) and nutritional (antioxidant properties) quality. Here, using a pseudo full-sibling F1 progeny previously studied for fruit sensorial quality of cultivated strawberry (Fragaria × ananassa), we explored over two successive years the genetic architecture of flavonoid-related traits using liquid chromatography electrospray ionization tandem mass spectrometry (13 compounds including anthocyanins, flavonols, and flavan-3-ols) and colorimetric assays (anthocyanins, flavonoids, phenolics, and total antioxidant capacity (ferric reducing antioxidant power and Trolox equivalent antioxidant capacity)). Network correlation analysis highlighted the high connectivity of flavonoid compounds within each chemical class and low correlation with colorimetric traits except for anthocyanins. Mapping onto the female and male linkage maps of 152 flavonoid metabolic quantitative trait loci (mQTLs) and of 26 colorimetric QTLs indicated colocalization on few linkage groups of major flavonoid- and taste-related QTLs previously uncovered. These results pave the way for the discovery of genetic variations underlying flavonoid mQTLs and for marker-assisted selection of strawberry varieties with improved sensorial and nutritional quality.


Assuntos
Flavonoides/biossíntese , Fragaria/genética , Frutas/química , Locos de Características Quantitativas , Antocianinas/metabolismo , Fragaria/química , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Controle de Qualidade
11.
Trends Plant Sci ; 25(2): 130-140, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31699520

RESUMO

Strawberry is a fruit crop species of major horticultural importance, for which fruit quality and the control of flowering (for fruit yield), runnering (for vegetative propagation), and the trade-off between the two are main breeding targets. The octoploid cultivated strawberry has a limited genetic basis. This raises the question of how to identify important gene targets and successfully exploit them for strawberry improvement. In this Opinion article we propose to apply to woodland strawberry, a wild diploid species displaying wide diversity, the strategies successfully employed in recent years for the identification of genetic variations underlying fruit quality and fruit yield traits in solanaceous crops (tomato, potato). Next we propose to use gene editing technologies to translate the findings to cultivated strawberry.


Assuntos
Fragaria , Solanum lycopersicum , Cruzamento , Frutas , Fenótipo
12.
J Exp Bot ; 70(20): 5687-5701, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31328226

RESUMO

Plant development studies often generate data in the form of multivariate time series, each variable corresponding to a count of newly emerged organs for a given development process. These phenological data often exhibit highly structured patterns, and the aim of this study was to identify such patterns in cultivated strawberry. Six strawberry genotypes were observed weekly for their course of emergence of flowers, leaves, and stolons during 7 months. We assumed that these phenological series take the form of successive phases, synchronous between individuals. We applied univariate multiple change-point models for the identification of flowering, vegetative development, and runnering phases, and multivariate multiple change-point models for the identification of consensus phases for these three development processes. We showed that the flowering and the runnering processes are the main determinants of the phenological pattern. On this basis, we propose a typology of the six genotypes in the form of a hierarchical classification. This study introduces a new longitudinal data modeling approach for the identification of phenological phases in plant development. The focus was on development variables but the approach can be directly extended to growth variables and to multivariate series combining growth and development variables.


Assuntos
Fragaria/crescimento & desenvolvimento , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Estudos Longitudinais , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia
13.
Hortic Res ; 4: 17062, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29138689

RESUMO

The cultivated strawberry (Fragaria×ananassa) is consumed worldwide for its flavor and nutritional benefits. Genetic analysis of commercially important traits in strawberry are important for the development of breeding methods and tools for this species. Although several quantitative trait loci (QTL) have been previously detected for fruit quality and flowering traits using low-density genetic maps, clarity on the sub-genomic locations of these QTLs was missing. Recent discoveries in allo-octoploid strawberry genomics led to the development of the IStraw90 single-nucleotide polymorphism (SNP) array, enabling high-density genetic maps and finer resolution QTL analysis. In this study, breeder-specified traits were evaluated in the Eastern (Michigan) and Western (Oregon) United States for a common set of breeding populations during 2 years. Several QTLs were validated for soluble solids content (SSC), fruit weight (FWT), pH and titratable acidity (TA) using a pedigree-based QTL analysis approach. For fruit quality, a QTL for SSC on linkage group (LG) 6A, a QTL for FWT on LG 2BII, a QTL for pH on LG 4CII and two QTLs for TA on LGs 2A and 5B were detected. In addition, a large-effect QTL for flowering was detected at the distal end of LG 4A, coinciding with the FaPFRU locus. Marker haplotype analysis in the FaPFRU region indicated that the homozygous recessive genotype was highly predictive of seasonal flowering. SNP probes in the FaPFRU region may help facilitate marker-assisted selection for this trait.

14.
Plant Cell ; 29(9): 2168-2182, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28874507

RESUMO

Asexual and sexual reproduction occur jointly in many angiosperms. Stolons (elongated stems) are used for asexual reproduction in the crop species potato (Solanum tuberosum) and strawberry (Fragaria spp), where they produce tubers and clonal plants, respectively. In strawberry, stolon production is essential for vegetative propagation at the expense of fruit yield, but the underlying molecular mechanisms are unknown. Here, we show that the stolon deficiency trait of the runnerless (r) natural mutant in woodland diploid strawberry (Fragaria vesca) is due to a deletion in the active site of a gibberellin20-oxidase (GA20ox) gene, which is expressed primarily in the axillary meristem dome and primordia and in developing stolons. This mutation, which is found in all r mutants, goes back more than three centuries. When FveGA20ox4 is mutated, axillary meristems remain dormant or produce secondary shoots terminated by inflorescences, thus increasing the number of inflorescences in the plant. The application of bioactive gibberellin (GA) restored the runnering phenotype in the r mutant, indicating that GA biosynthesis in the axillary meristem is essential for inducing stolon differentiation. The possibility of regulating the runnering-flowering decision in strawberry via FveGA20ox4 provides a path for improving productivity in strawberry by controlling the trade-off between sexual reproduction and vegetative propagation.


Assuntos
Diploide , Flores/fisiologia , Fragaria/enzimologia , Fragaria/genética , Oxigenases de Função Mista/metabolismo , Arabidopsis/genética , Biocatálise , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Giberelinas/metabolismo , Homozigoto , Meristema/fisiologia , Fenótipo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
J Exp Bot ; 67(19): 5643-5655, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27664957

RESUMO

The genetic control of the switch between seasonal and perpetual flowering has been deciphered in various perennial species. However, little is known about the genetic control of the dynamics of perpetual flowering, which changes abruptly at well-defined time instants during the growing season. Here, we characterize the perpetual flowering pattern and identify new genetic controls of this pattern in the cultivated strawberry. Twenty-one perpetual flowering strawberry genotypes were phenotyped at the macroscopic scale for their course of emergence of inflorescences and stolons during the growing season. A longitudinal analysis based on the segmentation of flowering rate profiles using multiple change-point models was conducted. The flowering pattern of perpetual flowering genotypes takes the form of three or four successive phases: an autumn-initiated flowering phase, a flowering pause, and a single stationary perpetual flowering phase or two perpetual flowering phases, the second one being more intense. The genetic control of flowering was analysed by quantitative trait locus mapping of flowering traits based on these flowering phases. We showed that the occurrence of a fourth phase of intense flowering is controlled by a newly identified locus, different from the locus FaPFRU, controlling the switch between seasonal and perpetual flowering behaviour. The role of this locus was validated by the analysis of data obtained previously during six consecutive years.


Assuntos
Flores/crescimento & desenvolvimento , Fragaria/crescimento & desenvolvimento , Flores/genética , Fragaria/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Modelos Biológicos , Locos de Características Quantitativas/genética , Locos de Características Quantitativas/fisiologia
16.
Plant Biotechnol J ; 14(11): 2176-2189, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27168086

RESUMO

Extending the period of fruit production is a way to substantially increase crop yield in many fruit or ornamental species. In the cultivated octoploid strawberry (Fragaria × ananassa), the most consumed small fruit worldwide, fruit production season can be extended by selecting the perpetual flowering (PF) cultivars. This trait is of considerable interest to growers and to the food industry. Four homoeologous loci controlling a single trait can be expected in such a complex octoploid species. However, we recently showed that the PF trait is under the control of the single dominant FaPFRU locus (J. Exp. Bot., 2013, 64, 1837), making it potentially amenable to marker-assisted selection (MAS). Here, we report the successful use of a strategy, based on a selective mapping using a reduced sample of individuals, to identify nine markers in close linkage to the FaPFRU allelic variant. Thus, this strategy can be used to fine map the target homoeologous loci in other complex polyploid crop species. Recombinant analysis further enabled us to reduce the locus to a region flanked by two markers, Bx083_206 and Bx215_131, corresponding to a 1.1 Mb region in the diploid F. vesca reference genome. This region comprises 234 genes, including 15 flowering associated genes. Among these, the FLOWERING LOCUS T (FT) is known to be a key activator of flowering. The close association between the PF trait and the FaPFRU flanking markers was validated using an additional segregating population and genetic resources. This study lays the foundation for effective and rapid breeding of PF strawberry cultivars by MAS.


Assuntos
Flores/genética , Fragaria/genética , Ligação Genética/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliploidia
17.
PLoS One ; 10(12): e0144960, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26675207

RESUMO

Cultivated strawberry (Fragaria × ananassa) is a genetically complex allo-octoploid crop with 28 pairs of chromosomes (2n = 8x = 56) for which a genome sequence is not yet available. The diploid Fragaria vesca is considered the donor species of one of the octoploid sub-genomes and its available genome sequence can be used as a reference for genomic studies. A wide number of strawberry cultivars are stored in ex situ germplasm collections world-wide but a number of previous studies have addressed the genetic diversity present within a limited number of these collections. Here, we report the development and application of two platforms based on the implementation of Diversity Array Technology (DArT) markers for high-throughput genotyping in strawberry. The first DArT microarray was used to evaluate the genetic diversity of 62 strawberry cultivars that represent a wide range of variation based on phenotype, geographical and temporal origin and pedigrees. A total of 603 DArT markers were used to evaluate the diversity and structure of the population and their cluster analyses revealed that these markers were highly efficient in classifying the accessions in groups based on historical, geographical and pedigree-based cues. The second DArTseq platform took benefit of the complexity reduction method optimized for strawberry and the development of next generation sequencing technologies. The strawberry DArTseq was used to generate a total of 9,386 SNP markers in the previously developed '232' × '1392' mapping population, of which, 4,242 high quality markers were further selected to saturate this map after several filtering steps. The high-throughput platforms here developed for genotyping strawberry will facilitate genome-wide characterizations of large accessions sets and complement other available options.


Assuntos
Mapeamento Cromossômico , Fragaria/genética , Ligação Genética , Variação Genética , Genômica/métodos , Análise por Conglomerados , Diploide , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Poliploidia
18.
BMC Genomics ; 16: 155, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25886969

RESUMO

BACKGROUND: A high-throughput genotyping platform is needed to enable marker-assisted breeding in the allo-octoploid cultivated strawberry Fragaria × ananassa. Short-read sequences from one diploid and 19 octoploid accessions were aligned to the diploid Fragaria vesca 'Hawaii 4' reference genome to identify single nucleotide polymorphisms (SNPs) and indels for incorporation into a 90 K Affymetrix® Axiom® array. We report the development and preliminary evaluation of this array. RESULTS: About 36 million sequence variants were identified in a 19 member, octoploid germplasm panel. Strategies and filtering pipelines were developed to identify and incorporate markers of several types: di-allelic SNPs (66.6%), multi-allelic SNPs (1.8%), indels (10.1%), and ploidy-reducing "haploSNPs" (11.7%). The remaining SNPs included those discovered in the diploid progenitor F. iinumae (3.9%), and speculative "codon-based" SNPs (5.9%). In genotyping 306 octoploid accessions, SNPs were assigned to six classes with Affymetrix's "SNPolisher" R package. The highest quality classes, PolyHigh Resolution (PHR), No Minor Homozygote (NMH), and Off-Target Variant (OTV) comprised 25%, 38%, and 1% of array markers, respectively. These markers were suitable for genetic studies as demonstrated in the full-sib family 'Holiday' × 'Korona' with the generation of a genetic linkage map consisting of 6,594 PHR SNPs evenly distributed across 28 chromosomes with an average density of approximately one marker per 0.5 cM, thus exceeding our goal of one marker per cM. CONCLUSIONS: The Affymetrix IStraw90 Axiom array is the first high-throughput genotyping platform for cultivated strawberry and is commercially available to the worldwide scientific community. The array's high success rate is likely driven by the presence of naturally occurring variation in ploidy level within the nominally octoploid genome, and by effectiveness of the employed array design and ploidy-reducing strategies. This array enables genetic analyses including generation of high-density linkage maps, identification of quantitative trait loci for economically important traits, and genome-wide association studies, thus providing a basis for marker-assisted breeding in this high value crop.


Assuntos
Fragaria/genética , Técnicas de Genotipagem/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único , Poliploidia , Mapeamento Cromossômico , Hibridização Genética , Mutação INDEL , Análise de Sequência de DNA
19.
Front Plant Sci ; 5: 666, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520729

RESUMO

Branching in temperate plants is closely linked to bud fates, either floral or vegetative. Here, we review how the fate of meristematic tissues contained in buds and their position along a shoot imprint specific branching patterns which differ among species. Through examples chosen in closely related species in different genera of the Rosaceae family, a panorama of patterns is apparent. Patterns depend on whether vegetative and floral buds are borne individually or together in mixed buds, develop as the shoot grows or after a rest period, and are located in axillary or terminal positions along the parent shoot. The resulting branching patterns are conserved among varieties in a given species but progressively change with the parent shoot length during plant ontogeny. They can also be modulated by agronomic and environmental conditions. The existence of various organizations in the topology and fate of meristematic tissues and their appendages in closely related species questions the between-species conservation of physiological and molecular mechanisms leading to bud outgrowth vs. quiescence and to floral induction vs. vegetative development.

20.
Plant Physiol ; 163(1): 43-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23835409

RESUMO

Plant phenolics have drawn increasing attention due to their potential nutritional benefits. Although the basic reactions of the phenolics biosynthetic pathways in plants have been intensively analyzed, the regulation of their accumulation and flux through the pathway is not that well established. The aim of this study was to use a strawberry (Fragaria × ananassa) microarray to investigate gene expression patterns associated with the accumulation of phenylpropanoids, flavonoids, and anthocyanins in strawberry fruit. An examination of the transcriptome, coupled with metabolite profiling data from different commercial varieties, was undertaken to identify genes whose expression correlated with altered phenolics composition. Seventeen comparative microarray analyses revealed 15 genes that were differentially (more than 200-fold) expressed in phenolics-rich versus phenolics-poor varieties. The results were validated by heterologous expression of the peroxidase FaPRX27 gene, which showed the highest altered expression level (more than 900-fold). The encoded protein was functionally characterized and is assumed to be involved in lignin formation during strawberry fruit ripening. Quantitative trait locus analysis indicated that the genomic region of FaPRX27 is associated with the fruit color trait. Down-regulation of the CHALCONE SYNTHASE gene and concomitant induction of FaPRX27 expression diverted the flux from anthocyanins to lignin. The results highlight the competition of the different phenolics pathways for their common precursors. The list of the 15 candidates provides new genes that are likely to impact polyphenol accumulation in strawberry fruit and could be used to develop molecular markers to select phenolics-rich germplasm.


Assuntos
Antocianinas/biossíntese , Fragaria/enzimologia , Lignina/biossíntese , Peroxidase/fisiologia , Proteínas de Plantas/fisiologia , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas , Cor , Regulação para Baixo , Frutas/enzimologia , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Peroxidase/genética , Peroxidase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...