Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1009487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275524

RESUMO

Genetic modification is one possible strategy to generate bananas (Musa spp.) with resistance to the soil-borne pathogen causing Fusarium wilt. The availability of banana root-specific promoters to target transgene expression to the sites of infection would be beneficial. We have assessed 18 promoter sequences derived from a range of plant species for their expression profiles in banana tissues to identify those with root-specific activity. Promoter sequences were isolated and fused to the ß-glucuronidase (GUS) gene to assess their expression levels and tissue specificity in both banana and the model plant tobacco. Two heterologous promoters conferring high root expression levels in banana were identified, including a ß-glucosidase 1 (GLU1) promoter from maize and the RB7-type tonoplast intrinsic protein (TIP)-2 promoter from strawberry. Further, a novel Musa TIP2-2 promoter sequence was isolated and characterized which, when fused to the GUS gene, conferred very high GUS expression levels in banana roots. These promoters will expand the options for the control of gene expression in genetically modified bananas, providing a tool to develop plants with resistance not only to soil-borne diseases such as Fusarium wilt, but also for the improvement of other traits, such as nematode resistance, nutrition or abiotic stress resistance.

2.
Plant Biotechnol J ; 16(2): 394-403, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28640945

RESUMO

Human vitronectin (hVN) is a glycoprotein that functions as a cell adhesion molecule and a regulator of coagulation in blood plasma and the extracellular matrix. In vitro, hVN is added to serum-free media in order to promote the adhesion of animal cells to tissue culture surfaces and the proliferation of undifferentiated stem cells. Here, we report the production of hVN in Nicotiana benthamiana using the inducible In Plant ACTivation (INPACT) hyperexpression platform. N. benthamiana plants were transformed with an INPACT expression cassette encoding hVN, and both the Tobacco yellow dwarf virus Rep/RepA activator and Tomato bushy stunt virus p19 gene under the transcriptional control of the ethanol-inducible AlcR:alcA gene switch. hVN expression was maximal 4-5 days postactivation of the INPACT platform with a dilute ethanol solution, and crude yields of the recombinant protein reached a maximum of 643 ± 78 mg/kg fresh weight. A three-stage purification protocol was developed using heparin and polyhistidine tag affinity binding and size exclusion filtration, resulting in a plant-made hVN product of >90% purity. Storage conditions for plant-made hVN were identified that maximized the capacity of the recombinant protein to promote cell adhesion. Critically, plant-made hVN was shown to be functionally equivalent to commercial, plasma-derived hVN at promoting one-half maximal attachment of murine fibroblast cells (BALB-C/3T3) in serum-free medium at <0.1 µg/cm2 to tissue culture plasticware. The INPACT platform represents an attractive means of producing large quantities of functional, animal-free hVN for in vitro applications.


Assuntos
Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Vitronectina/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Vitronectina/genética
3.
Plant Biotechnol J ; 15(4): 520-532, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27734628

RESUMO

Vitamin A deficiency remains one of the world's major public health problems despite food fortification and supplements strategies. Biofortification of staple crops with enhanced levels of pro-vitamin A (PVA) offers a sustainable alternative strategy to both food fortification and supplementation. As a proof of concept, PVA-biofortified transgenic Cavendish bananas were generated and field trialed in Australia with the aim of achieving a target level of 20 µg/g of dry weight (dw) ß-carotene equivalent (ß-CE) in the fruit. Expression of a Fe'i banana-derived phytoene synthase 2a (MtPsy2a) gene resulted in the generation of lines with PVA levels exceeding the target level with one line reaching 55 µg/g dw ß-CE. Expression of the maize phytoene synthase 1 (ZmPsy1) gene, used to develop 'Golden Rice 2', also resulted in increased fruit PVA levels although many lines displayed undesirable phenotypes. Constitutive expression of either transgene with the maize polyubiquitin promoter increased PVA accumulation from the earliest stage of fruit development. In contrast, PVA accumulation was restricted to the late stages of fruit development when either the banana 1-aminocyclopropane-1-carboxylate oxidase or the expansin 1 promoters were used to drive the same transgenes. Wild-type plants with the longest fruit development time had also the highest fruit PVA concentrations. The results from this study suggest that early activation of the rate-limiting enzyme in the carotenoid biosynthetic pathway and extended fruit maturation time are essential factors to achieve optimal PVA concentrations in banana fruit.


Assuntos
Musa/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Vitamina A/metabolismo , Biofortificação , Musa/genética , Plantas Geneticamente Modificadas/genética , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA