Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Arch Biochem Biophys ; 749: 109792, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37863349

RESUMO

Phenylketonuria (PKU) is the most common inherited metabolic disorders caused by severe deficiency or absence of phenylalanine hydroxylase activity that converts phenylalanine (Phe) to tyrosine. PKU patients were treated with a Phe restricted diet supplemented with a special formula containing l-carnitine (L-car), well-known antioxidant compound. The lack of treatment can cause neurological and cognitive impairment, as severe mental retardation, neuronal cell loss and synaptic density reduction. Although Phe has been widely demonstrated to be involved in PKU neurotoxicity, the mechanisms responsible for the CNS injury are still not fully known. In this work, we evaluated markers of neurodegeneration, namely BDNF (brain-derived neurotrophic factor), PAI-1 total (Plasminogen activator inhibitor-1 total), Cathepsin D, PDGF AB/BB (platelet-derived growth factor), and NCAM (neuronal adhesion molecule) in plasma of PKU patients at early and late diagnosis and under treatment. We found decreased Phe levels and increased L-car concentrations in PKU patients treated with L-car compared to the other groups, indicating that the proposed treatment was effective. Furthermore, we found increased BDNF levels in the patients under treatment compared to patients at early diagnosis, and a positive correlation between BDNF and L-car and a negative correlation between BDNF and Phe. Our results may indicate that in PKU patients treated with L-car there is an attempt to adjust neuronal plasticity and recover the damage suffered, reflecting a compensatory response to brain injury.


Assuntos
Carnitina , Fenilcetonúrias , Humanos , Fator Neurotrófico Derivado do Encéfalo , Fenilcetonúrias/tratamento farmacológico , Suplementos Nutricionais , Antioxidantes , Fenilalanina , Becaplermina
2.
Int J Dev Neurosci ; 83(6): 489-504, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37340513

RESUMO

Maple syrup urine disease (MSUD) is caused by a deficiency in the activity of the branched-chain α-ketoacid dehydrogenase (BCKD) complex, promoting the accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, as well as their respective α-keto acids. MSUD is an autosomal recessive hereditary metabolic disorder characterized by ketoacidosis, ataxia, coma, and mental and psychomotor retardation. The mechanisms involved in the brain damage caused by MSUD are not fully understood. Early diagnosis and treatment, as well as proper control of metabolic decompensation crises, are crucial for patients' survival and for a better prognosis. The recommended treatment consists of a high-calorie diet with restricted protein intake and specific formulas containing essential amino acids, except those accumulated in MSUD. This treatment will be maintained throughout life, being adjusted according to the patients' nutritional needs and BCAA concentration. Because dietary treatment may not be sufficient to prevent neurological damage in MSUD patients, other therapeutic strategies have been studied, including liver transplantation. With transplantation, it is possible to obtain an increase of about 10% of the normal BCKD in the body, an amount sufficient to maintain amino acid homeostasis and reduce metabolic decompensation crises. However, the experience related to this practice is very limited when considering the shortage of liver for transplantation and the risks related to the surgical procedure and immunosuppression. Thus, the purpose of this review is to survey the benefits, risks, and challenges of liver transplantation in the treatment of MSUD.


Assuntos
Transplante de Fígado , Doença da Urina de Xarope de Bordo , Humanos , Doença da Urina de Xarope de Bordo/metabolismo , Aminoácidos de Cadeia Ramificada , Leucina , Dieta
3.
Cell Biochem Funct ; 41(4): 490-500, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37170672

RESUMO

Phenylketonuria (PKU) was the first genetic disease to have an effective therapy, which consists of phenylalanine intake restriction. However, there are patients who do not adhere to treatment and/or are not submitted to neonatal screening. PKU patients present L-carnitine (L-car) deficiency, compound that has demonstrated an antioxidant and anti-inflammatory role in metabolic diseases. This study evaluated the effect caused by exposure time to high Phe levels in PKU patients at early and late diagnosis, through pro- and anti-inflammatory cytokines, as well as the L-car effect in patients under treatment. It was observed that there was a decrease in phenylalanine levels in treated patients compared to patients at diagnosis, and an increase in L-car levels in the patients under treatment. Inverse correlation between Phe versus L-car and nitrate plus nitrite versus L-car in PKU patients was also showed. We found increased proinflammatory cytokines levels: interleukin (IL)-1ß, interferons (IFN)-gamma, IL-2, tumor necrosis factor (TNF)-alpha, IL-8 and IL-6 in the patients at late diagnosis compared to controls, and IL-8 in the patients at early diagnosis and treatment compared to controls. Increased IL-2, TNF-alpha, IL-6 levels in the patients at late diagnosis compared to early diagnosis were shown, and reduced IL-6 levels in the treated patients compared to patients at late diagnosis. Moreover, it verified a negative correlation between IFN-gamma and L-car in treated patients. Otherwise, it was observed that there were increased IL-4 levels in the patients at late diagnosis compared to early diagnosis, and reduction in treated patients compared to late diagnosed patients. In urine, there was an increase in 8-isoprostane levels in the patients at diagnosis compared to controls and a decrease in oxidized guanine species in the treated patients compared to the diagnosed patients. Our results demonstrate for the first time in literature that time exposure to high Phe concentrations generates a proinflammatory status, especially in PKU patients with late diagnosis. A pro-oxidant status was verified in not treated PKU patients. Our results demonstrate the importance of early diagnosis and prompt start of treatment, in addition to the importance of L-car supplementation, which can improve cellular defense against inflammation and oxidative damage in PKU patients.


Assuntos
Citocinas , Fenilcetonúrias , Recém-Nascido , Humanos , Fenilalanina , Diagnóstico Tardio , Interleucina-2 , Interleucina-6 , Interleucina-8 , Carnitina/farmacologia , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/urina , Fator de Necrose Tumoral alfa
4.
Biochem Cell Biol ; 101(4): 294-302, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37042460

RESUMO

Lysosomal acid lipase deficiency (LALD) is an inborn error of metabolism that lacks satisfactory treatment, which leads to the development of severe hepatic and cardiac complications and may even lead to death. In this sense, knowledge of the mechanisms involved in the pathophysiology of this disorder becomes essential to allow the search for new therapeutic strategies. There are no studies in the literature investigating the role of reactive species and inflammatory processes in the pathophysiology of this disorder. Therefore, the aim of this work was to investigate parameters of oxidative and inflammatory stress in LALD patients. In this work, we obtained results that demonstrate that LALD patients are susceptible to oxidative stress caused by an increase in the production of free radicals, observed by the increase of 2-7-dihydrodichlorofluorescein. The decrease in sulfhydryl content reflects oxidative damage to proteins, as well as a decrease in antioxidant defenses. Likewise, the increase in urinary levels of di-tyrosine observed also demonstrates oxidative damage to proteins. Furthermore, the determination of chitotriosidase activity in the plasma of patients with LALD was significantly higher, suggesting a pro-inflammatory state. An increase in plasma oxysterol levels was observed in patients with LALD, indicating an important relationship between this disease and cholesterol metabolism and oxidative stress. Also, we observed in LALD patients increased levels of nitrate production. The positive correlation found between oxysterol levels and activity of chitotriosidase in these patients indicates a possible link between the production of reactive species and inflammation. In addition, an increase in lipid profile biomarkers such as total and low-density lipoprotein cholesterol were demonstrated in the patients, which reinforces the involvement of cholesterol metabolism. Thus, we can assume that, in LALD, oxidative and nitrosative damage, in addition to inflammatory process, play an important role in its evolution and future clinical manifestations. In this way, we can suggest that the study of the potential benefit of the use of antioxidant and anti-inflammatory substances as an adjuvant tool in the treatment will be important, which should be associated with the already recommended therapy.


Assuntos
Antioxidantes , Estresse Oxidativo , Humanos , Colesterol , Lipídeos , Doença de Wolman
5.
Life Sci ; 310: 121084, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257458

RESUMO

AIMS: Throughout gestation, proteins in the diet are a source of essential amino acids that are crucial for proper healthy fetal growth and development. The present study was proposed to investigate the effect of high-protein diet consumption throughout pregnancy on redox homeostasis, neuroinflammatory status and amino acid levels, including homocysteine, in the male adolescent rats offspring's cerebral cortex. We also performed a battery of behavioral tests to evaluate maternal care, olfactory preference, exploratory capacity, habituation, memory, anxiety- and depression-like behavior motor activity in the offspring. MAIN METHODS: After pregnancy confirmation, the pregnant rats were randomly divided into two groups, according to the diet: group 1, (control) standard diet containing 20 % protein, and group 2, the high-protein diet containing 50 % protein. Throughout the gestational period, the pregnant rats received experimental diets. KEY FINDINGS: Results showed an increase in homocysteine levels and neuroinflammatory mediators in the offspring's cerebral cortex from pregnant rats supplemented with a high-protein diet throughout pregnancy. Besides decreasing histidine levels in offspring's serum. The results also revealed an impairment in memory and motricity and an increase in anxiety-like behavior in the offspring supplemented with a high-protein diet throughout pregnancy. Our findings showed a significant effect of high-protein diet consumption throughout pregnancy on offspring's neurobiochemistry, which can negatively impact behavioral performance. SIGNIFICANCE: Our results reinforce the importance of consuming a balanced diet during the gestational period, especially macronutrients such as proteins since the fetus is sensitive to the mother's diet during pregnancy which may impact the development of the offspring.


Assuntos
Doenças Neuroinflamatórias , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Animais , Ratos , Masculino , Fenômenos Fisiológicos da Nutrição Pré-Natal , Dieta/efeitos adversos , Ansiedade/etiologia , Homocisteína
6.
Cell Mol Neurobiol ; 42(8): 2593-2610, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34665389

RESUMO

Ammonia is a neurotoxic compound which is detoxified through liver enzymes from urea cycle. Several inherited or acquired conditions can elevate ammonia concentrations in blood, causing severe damage to the central nervous system due to the toxic effects exerted by ammonia on the astrocytes. Therefore, hyperammonemic patients present potentially life-threatening neuropsychiatric symptoms, whose severity is related with the hyperammonemia magnitude and duration, as well as the brain maturation stage. Inherited metabolic diseases caused by enzymatic defects that compromise directly or indirectly the urea cycle activity are the main cause of hyperammonemia in the neonatal period. These diseases are mainly represented by the congenital defects of urea cycle, classical organic acidurias, and the defects of mitochondrial fatty acids oxidation, with hyperammonemia being more severe and frequent in the first two groups mentioned. An effective and rapid treatment of hyperammonemia is crucial to prevent irreversible neurological damage and it depends on the understanding of the pathophysiology of the diseases, as well as of the available therapeutic approaches. In this review, the mechanisms underlying the hyperammonemia and neurological dysfunction in urea cycle disorders, organic acidurias, and fatty acids oxidation defects, as well as the therapeutic strategies for the ammonia control will be discussed.


Assuntos
Hiperamonemia , Doenças Metabólicas , Amônia/metabolismo , Ácidos Graxos , Humanos , Hiperamonemia/complicações , Hiperamonemia/diagnóstico , Recém-Nascido , Ureia/metabolismo
7.
Metab Brain Dis ; 36(7): 1957-1968, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216350

RESUMO

Although phenylalanine (Phe) is known to be neurotoxic in phenylketonuria (PKU), its exact pathogenetic mechanisms of brain damage are still poorly known. Furthermore, much less is known about the role of the Phe derivatives phenylacetic (PAA), phenyllactic (PLA) and phenylpyruvic (PPA) acids that also accumulate in this this disorder on PKU neuropathology. Previous in vitro and in vivo studies have shown that Phe elicits oxidative stress in brain of rodents and that this deleterious process also occurs in peripheral tissues of phenylketonuric patients. In the present study, we investigated whether Phe and its derivatives PAA, PLA and PPA separately or in combination could induce reactive oxygen species (ROS) formation and provoke DNA damage in C6 glial cells. We also tested the role of L-carnitine (L-car), which has been recently considered an antioxidant agent and easily cross the blood brain barrier on the alterations of C6 redox status provoked by Phe and its metabolites. We first observed that cell viability was not changed by Phe and its metabolites. Furthermore, Phe, PAA, PLA and PPA, at concentrations found in plasma of PKU patients, provoked marked DNA damage in the glial cells separately and when combined. Of note, these effects were totally prevented (Phe, PAA and PPA) or attenuated (PLA) by L-car pre-treatment. In addition, a potent ROS formation also induced by Phe and PAA, whereas only moderate increases of ROS were caused by PPA and PLA. Pre-treatment with L-car also prevented Phe- and PAA-induced ROS generation, but not that provoked by PLA and PPA. Thus, our data show that Phe and its major metabolites accumulated in PKU provoke extensive DNA damage in glial cells probably by ROS formation and that L-car may potentially represent an adjuvant therapeutic agent in PKU treatment.


Assuntos
Lesões Encefálicas , Fenilcetonúrias , Lesões Encefálicas/tratamento farmacológico , Carnitina/farmacologia , Carnitina/uso terapêutico , Humanos , Cetoácidos/farmacologia , Estresse Oxidativo , Fenilalanina/farmacologia , Fenilalanina/uso terapêutico
8.
Amino Acids ; 52(4): 629-638, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32246211

RESUMO

Hypermethioninemia is a disorder characterized by high plasma levels of methionine (Met) and its metabolites such as methionine sulfoxide (MetO). Studies have reported associated inflammatory complications, but the mechanisms involved in the pathophysiology of hypermethioninemia are still uncertain. The present study aims to evaluate the effect of chronic administration of Met and/or MetO on phenotypic characteristics of macrophages, in addition to oxidative stress, purinergic system, and inflammatory mediators in macrophages. In this study, Swiss male mice were subcutaneously injected with Met and MetO at concentrations of 0.35-1.2 g/kg body weight and 0.09-0.3 g/kg body weight, respectively, from the 10th-38th day post-birth, while the control group was treated with saline solution. The results revealed that Met and/or MetO induce an M1/classical activation phenotype associated with increased levels of tumor necrosis factor alpha and nitrite, and reduced arginase activity. It was also found that Met and/or MetO alter the activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, as well as the levels of thiol and reactive oxygen species in macrophages. The chronic administration of Met and/or MetO also promotes alteration in the hydrolysis of ATP and ADP, as indicated by the increased activity of ectonucleotidases. These results demonstrate that chronic administration of Met and/or MetO promotes activated pro-inflammatory profile by inducing M1/classical macrophage polarization. Thus, the changes in redox status and purinergic system upon chronic Met and/or MetO exposure may contribute towards better understanding of the alterations consistent with hypermethioninemic patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/imunologia , Glicina N-Metiltransferase/deficiência , Macrófagos/imunologia , Metionina/análogos & derivados , Animais , Catalase/metabolismo , Polaridade Celular , Glutationa Peroxidase/metabolismo , Glicina N-Metiltransferase/imunologia , Macrófagos/efeitos dos fármacos , Masculino , Metionina/administração & dosagem , Metionina/metabolismo , Metionina/farmacologia , Camundongos , Oxirredução , Estresse Oxidativo , Fenótipo , Superóxido Dismutase/metabolismo
9.
J. Bras. Patol. Med. Lab. (Online) ; 56: e1402020, 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1134634

RESUMO

ABSTRACT Female patient carrier of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) with recurrent clinical episodes of hypoglycemia and altered level of consciousness, presented changes in blood acylcarnitine profile by tandem mass spectrometry and in the urinary organic acid analysis by gas chromatography/mass spectrometry (GC/MS). This case demonstrates the importance of fasting prior biological sample collection (when possible) when MCADD is suspected, and emphasizes that the time/momentum of biological sample collection is crucial to diagnosis, considering the possibility that MCADD is underdiagnosed in Brazil.


RESUMEN Paciente portadora de deficiencia de acil-CoA deshidrogenasa de cadena media (MCADD) con episodios clínicos recurrentes de hipoglucemia y alteración de consciencia presentó mudanzas en el perfil de acilcarnitinas en la sangre con técnicas de espectrometría de masas en tándem y en el análisis de ácidos orgánicos urinarios mediante cromatografía de gases acoplada a espectrometría de masas. Este caso demuestra la importancia de la toma de muestras biológicas en ayunas (se posible) cuando se sospecha de MCADD y destaca que el tiempo/momento de extracción de la muestra biológica es valioso para el diagnóstico, considerando la posibilidad de que la MCADD es subdiagnosticada en Brasil.


RESUMO Paciente portadora de deficiência de acil-CoA desidrogenase de cadeia média (MCADD), com episódios clínicos recorrentes de hipoglicemia e alteração de consciência, apresentou alterações no perfil de acilcarnitinas em sangue por espectrometria de massas em tandem e na análise de ácidos orgânicos urinários por cromatografia gasosa acoplada à espectrometria de massa. Este caso demonstra a importância da coleta de amostra biológica em jejum (se possível) quando há suspeita de MCADD e ressalta que o tempo/momento de coleta da amostra biológica é importante para o diagnóstico, considerando a possibilidade de a MCADD ser subdiagnosticada no Brasil.

10.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2420-2427, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31181292

RESUMO

The deficiency of the enzyme glutaryl-CoA dehydrogenase leads to predominant accumulation of glutaric acid (GA) in the organism and is known as glutaric acidemia type I (GA1). Despite the mechanisms of brain damage involved in GA1 are not fully understood, oxidative stress may be involved in this process. Treatment is based on protein/lysine (Lys) restriction and l-carnitine (L-car) supplementation. L-car was recently shown to have an important antioxidant role. A knockout mice model (Gcdh-/-) submitted to a dietary overload of Lys was developed to better understand the GA1 pathogenesis. In this study, we evaluated L-car and glutarylcarnitine levels, the lipid and protein damage, reactive oxygen species (ROS) production and antioxidant enzymes activities in striatum of Gcdh-/- and wild-type (WT) mice. We also determined the effect of the L-car treatment on these parameters. Thirty-day-old Gcdh-/- and WT mice were fed a normal chow (0.9% Lys) or submitted to a high Lys diet (4.7%) for 72 h. Additionally, these animals were administered with three intraperitoneal injections of saline or L-car in different times. Gcdh-/- mice were deficient in L-car and presented a higher glutarylcarnitine levels. They also presented lipid and protein damage, an increased ROS production and altered antioxidant enzymes compared to WT mice. Additionally, mice exposed to Lys overload presented higher alterations in these parameters than mice under normal diet, which were significantly decreased or normalized in those receiving L-car. Thus, we demonstrated a new beneficial effect of the L-car treatment attenuating or abolishing the oxidative stress process in Gcdh-/- mice.


Assuntos
Carnitina/farmacologia , Corpo Estriado/metabolismo , Glutaril-CoA Desidrogenase/genética , Lisina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Erros Inatos do Metabolismo dos Aminoácidos/veterinária , Animais , Encefalopatias Metabólicas/metabolismo , Encefalopatias Metabólicas/patologia , Encefalopatias Metabólicas/veterinária , Carnitina/análogos & derivados , Carnitina/metabolismo , Dieta/veterinária , Modelos Animais de Doenças , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/metabolismo , Glutationa Peroxidase/metabolismo , Lisina/sangue , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
11.
Genet Mol Biol ; 42(1 suppl 1): 178-185, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30985856

RESUMO

Organic acidurias and aminoacidopathies are groups of frequent inborn errors of metabolism (IEMs), which are caused by mutations in specific genes that lead to loss of protein/enzyme or transport function with important deleterious effects to cell metabolism. Since a considerable number of such disorders are potentially treatable when diagnosed at an early stage of life, diagnosis is crucial for the patients. In the present report, we describe symptomatic individuals referred to our service that were diagnosed with these disorders from 2006 to 2016. We used blood and urine samples from 21,800 patients suspected of aminoacidopathies or organic acidemias that were processed by the analytical techniques reverse phase high-performance liquid chromatography for amino acid quantification and gas chromatography coupled to mass spectrometry for organic acid detection. Analysis of dried blood spots by liquid chromatography-tandem mass spectrometry was used in some cases. We detected 258 cases of organic acidurias, and 117 patients with aminoacidopathies were diagnosed. Once diagnosis was performed, patients were promptly submitted to the available treatments with clear reduction of mortality and morbidity. The obtained data may help pediatricians and metabolic geneticists to become aware of these diseases and possibly expand newborn screening programs in the future.

12.
Cell Mol Neurobiol ; 38(8): 1505-1516, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30302628

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disorder caused by disfunction of the ABCD1 gene, which encodes a peroxisomal protein responsible for the transport of the very long-chain fatty acids from the cytosol into the peroxisome, to undergo ß-oxidation. The mainly accumulated saturated fatty acids are hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in tissues and body fluids. This peroxisomal disorder occurs in at least 1 out of 20,000 births. Considering that pathophysiology of this disease is not well characterized yet, and glial cells are widely used in studies of protective mechanisms against neuronal oxidative stress, we investigated oxidative damages and inflammatory effects of vesicles containing lecithin and C26:0, as well as the protection conferred by N-acetyl-L-cysteine (NAC), trolox (TRO), and rosuvastatin (RSV) was assessed. It was verified that glial cells exposed to C26:0 presented oxidative DNA damage (measured by comet assay and endonuclease III repair enzyme), enzymatic oxidative imbalance (high catalase activity), nitrative stress [increased nitric oxide (NO) levels], inflammation [high Interleukin-1beta (IL-1ß) levels], and induced lipid peroxidation (increased isoprostane levels) compared to native glial cells without C26:0 exposure. Furthermore, NAC, TRO, and RSV were capable to mitigate some damages caused by the C26:0 in glial cells. The present work yields experimental evidence that inflammation, oxidative, and nitrative stress may be induced by hexacosanoic acid, the main accumulated metabolite in X-ALD, and that antioxidants might be considered as an adjuvant therapy for this severe neurometabolic disease.


Assuntos
Acetilcisteína/farmacologia , Cromanos/farmacologia , Ácidos Graxos/farmacologia , Inflamação/patologia , Neuroglia/patologia , Estresse Nitrosativo , Estresse Oxidativo , Rosuvastatina Cálcica/farmacologia , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Dano ao DNA , Interleucina-1beta/metabolismo , Isoprostanos/metabolismo , Neuroglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Nitratos/metabolismo , Nitritos/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
13.
Arch Med Res ; 49(3): 205-212, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-30119976

RESUMO

BACKGROUND: Inborn errors of metabolism (IEM) are diseases which can lead to accumulation of toxic metabolites in the organism. AIM OF THE STUDY: To investigate, by selective screening, mitochondrial fatty acid oxidation defects (FAOD) and organic acidemias in Brazilian individuals with clinical suspicion of IEM. METHODS: A total of 7,268 individuals, from different regions of Brazil, had whole blood samples impregnated on filter paper which were submitted to the acylcarnitines analysis by liquid chromatography/tandem mass spectrometry (LC/MS/MS) at the Medical Genetics Service of Hospital de Clínicas de Porto Alegre, Brazil, during July 2008-July 2016. RESULTS: Our results showed that 68 patients (0.93%) were diagnosed with FAOD (19 cases) and organic acidemias (49 cases). The most prevalent FAOD was multiple acyl CoA dehydrogenase deficiency (MADD), whereas glutaric type I and 3-OH-3-methylglutaric acidemias were the most frequent disorders of organic acid metabolism. Neurologic symptoms and metabolic acidosis were the most common clinical and laboratory features, whereas the average age of the patients at diagnosis was 2.3 years. CONCLUSIONS: Results demonstrated a high incidence of glutaric acidemia type I and 3-OH-3- methylglutaric acidemia in Brazil and an unexpectedly low incidence of FAOD, particularly medium-chain acyl-CoA dehydrogenase deficiency (MCADD).


Assuntos
Acil-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Encefalopatias Metabólicas/diagnóstico , Carnitina/análogos & derivados , Ácidos Graxos/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo Lipídico/diagnóstico , Acil-CoA Desidrogenase/sangue , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Encefalopatias Metabólicas/sangue , Brasil , Carnitina/análise , Pré-Escolar , Cromatografia Líquida , Feminino , Glutaratos/metabolismo , Glutaril-CoA Desidrogenase/sangue , Humanos , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/sangue , Masculino , Programas de Rastreamento , Oxirredução , Prevalência , Espectrometria de Massas em Tandem , Adulto Jovem
14.
J Cell Biochem ; 119(1): 1223-1233, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28722826

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited disease characterized by progressive inflammatory demyelization in the brain, adrenal insufficiency, and an abnormal accumulation of very long chain fatty acids (VLCFA) in tissue and body fluids. Considering that inflammation might be involved in pathophysiology of X-ALD, we aimed to investigate pro- and anti-inflammatory cytokines in plasma from three different male phenotypes (CCER, AMN, and asymptomatic individuals). Our results showed that asymptomatic patients presented increased levels of pro-inflammatory cytokines IL-1ß, IL-2, IL-8, and TNF-α and the last one was also higher in AMN phenotype. Besides, asymptomatic patients presented higher levels of anti-inflammatory cytokines IL-4 and IL-10. AMN patients presented higher levels of IL-2, IL-5, and IL-4. We might hypothesize that inflammation in X-ALD is related to plasmatic VLCFA concentration, since there were positive correlations between C26:0 plasmatic levels and pro-inflammatory cytokines in asymptomatic and AMN patients and negative correlation between anti-inflammatory cytokine and C24:0/C22:0 ratio in AMN patients. The present work yields experimental evidence that there is an inflammatory imbalance associated Th1, (IL-2, IL-6, and IFN-γ), Th2 (IL-4 and IL-10), and macrophages response (TNF-α and IL-1ß) in the periphery of asymptomatic and AMN patients, and there is correlation between VLCFA plasmatic levels and inflammatory mediators in X-ALD. Furthermore, we might also speculate that the increase of plasmatic cytokines in asymptomatic patients could be considered an early biomarker of brain damage and maybe also a predictor of disease progression.


Assuntos
Adrenoleucodistrofia/imunologia , Citocinas/sangue , Macrófagos/imunologia , Células Th1/imunologia , Adolescente , Adrenoleucodistrofia/sangue , Adulto , Criança , Pré-Escolar , Ácidos Graxos/sangue , Humanos , Lactente , Interleucina-10/sangue , Interleucina-1beta/sangue , Interleucina-2/sangue , Interleucina-4/sangue , Interleucina-5/sangue , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
15.
Clin Chim Acta ; 478: 62-67, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29274327

RESUMO

Fabry disease (FD) is a disorder that results from mutations of hydrolase α-galactosidase A. The enzymatic defect leads to accumulation of globotriaosylceramide (Gb3) in the kidney. Substrate deposition is related to tissue damage in FD, but the relation of urinary Gb3 levels in patients and the renal function markers remain not completely understood. Once nephropathy is one of the main features of FD and is marked by an insidious development, we investigated a possible correlation of Gb3 with biochemical markers of nephropathy including albuminuria, estimated glomerular filtration rate (eGFR), serum creatinine and urea, and proteinuria in male and female patients under or not enzyme replacement therapy (ERT).Gb3, proteinuria and albuminuria were increased in male and female FD patients. We found no correlation between urinary Gb3 levels and all renal function parameters evaluated in Fabry patients (in both sexes and using or not ERT). On the other hand, albuminuria showed negative correlation with eGFR only in male under or not ERT, demonstrating that albuminuria seems to be an early marker of renal function alteration. In conclusion, the results suggest that urinary Gb3 level does not reflect the renal function and that albuminuria is an important biomarker in male FD patients.


Assuntos
Doença de Fabry/diagnóstico , Nefropatias/fisiopatologia , Triexosilceramidas/urina , Adulto , Albuminúria/diagnóstico , Biomarcadores/sangue , Doença de Fabry/metabolismo , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Fatores Sexuais , Adulto Jovem
16.
Clin. biomed. res ; 38(1): 50-57, 2018.
Artigo em Inglês | LILACS | ID: biblio-994866

RESUMO

Introduction: Homocysteine (Hcy) tissue accumulation occurs in a metabolic disease characterized biochemically by cystathionine ß-synthase (CBS) deficiency and clinically by mental retardation, vascular problems, and skeletal abnormalities. Previous studies indicate the occurrence of DNA damage secondary to hyperhomocysteinemia and it was observed that DNA damage occurs in leukocytes from CBS-deficient patients. This study aimed to investigate whether an oxidative mechanism could be involved in DNA damage previously found and investigated the in vitro effect of N-acety-L-cysteine (NAC) on DNA damage caused by high Hcy levels. Methods: We evaluated a biomarker of oxidative DNA damage in the urine of CBS­deficient patients, as well as the in vitro effect of NAC on DNA damage caused by high levels of Hcy. Moreover, a biomarker of lipid oxidative damage was also measured in urine of CBS deficient patients. Results: There was an increase in parameters of DNA (8-oxo-7,8-dihydro-2'- deoxyguanosine) and lipid (15-F2t-isoprostanes levels) oxidative damage in CBS-deficient patients when compared to controls. In addition, a significant positive correlation was found between 15-F2t-isoprostanes levels and total Hcy concentrations. Besides, an in vitro protective effect of NAC at concentrations of 1 and 5 mM was observed on DNA damage caused by Hcy 50 µM and 200 µM. Additionally, we showed a decrease in sulfhydryl content in plasma from CBS-deficient patients when compared to controls. Discussion: These results demonstrated that DNA damage occurs by an oxidative mechanism in CBS deficiency together with lipid oxidative damage, highlighting the NAC beneficial action upon DNA oxidative process, contributing with a new treatment perspective of the patients affected by classic homocystinuria.


Assuntos
Humanos , Feminino , Criança , Adolescente , Adulto , Adulto Jovem , Acetilcisteína/farmacologia , Dano ao DNA , Estresse Oxidativo , Cistationina/metabolismo , Desoxiguanosina/urina , Homocistinúria/genética , Antioxidantes/farmacologia , Biomarcadores/urina , Estudos de Casos e Controles , Creatinina/urina , Ensaio Cometa , Cistationina/biossíntese , Cistationina/sangue , Isoprostanos/análise , Desoxiguanosina/análogos & derivados , Homocisteína/sangue , Homocistinúria/sangue
17.
Mol Genet Metab Rep ; 11: 46-53, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28487826

RESUMO

Morquio A disease (Mucopolysaccharidosis type IVA, MPS IVA) is one of the 11 mucopolysaccharidoses (MPSs), a heterogeneous group of inherited lysosomal storage disorders (LSDs) caused by deficiency in enzymes need to degrade glycosaminoglycans (GAGs). Morquio A is characterized by a decrease in N-acetylgalactosamine-6-sulfatase activity and subsequent accumulation of keratan sulfate and chondroitin 6-sulfate in cells and body fluids. As the pathophysiology of this LSD is not completely understood and considering the previous results of our group concerning oxidative stress in Morquio A patients receiving enzyme replacement therapy (ERT), the aim of this study was to investigate oxidative stress parameters in Morquio A patients at diagnosis. It was studied 15 untreated Morquio A patients, compared with healthy individuals. The affected individuals presented higher lipid peroxidation, assessed by urinary 15-F2t-isoprostane levels and no protein damage, determined by sulfhydryl groups in plasma and di-tyrosine levels in urine. Furthermore, Morquio A patients showed DNA oxidative damage in both pyrimidines and purines bases, being the DNA damage positively correlated with lipid peroxidation. In relation to antioxidant defenses, affected patients presented higher levels of reduced glutathione (GSH) and increased activity of glutathione peroxidase (GPx), while superoxide dismutase (SOD) and glutathione reductase (GR) activities were similar to controls. Our findings indicate that Morquio A patients present at diagnosis redox imbalance and oxidative damage to lipids and DNA, reinforcing the idea about the importance of antioxidant therapy as adjuvant to ERT, in this disorder.

18.
Cell Mol Neurobiol ; 37(8): 1477-1485, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28258516

RESUMO

Homocystinuria is an inborn error of amino acid metabolism caused by deficiency of cystathionine ß-synthase (CBS) activity, biochemically characterized by homocysteine (Hcy) and methionine (Met) accumulation in biological fluids and high urinary excretion of homocystine. Clinical manifestations include thinning and lengthening of long bones, osteoporosis, dislocation of the ocular lens, thromboembolism, and mental retardation. Although the pathophysiology of this disease is poorly known, the present review summarizes the available experimental findings obtained from patients and animal models indicating that oxidative stress may contribute to the pathogenesis of homocystinuria. In this scenario, several studies have shown that enzymatic and non-enzymatic antioxidant defenses are decreased in individuals affected by this disease. Furthermore, markers of lipid, protein, and DNA oxidative damage have been reported to be increased in blood, brain, liver, and skeletal muscle in animal models studied and in homocystinuric patients, probably as a result of increased free radical generation. On the other hand, in vitro and in vivo studies have shown that Hcy induces reactive species formation in brain, so that this major accumulating metabolite may underlie the oxidative damage observed in the animal model and human condition. Taken together, it may be presumed that the disruption of redox homeostasis may contribute to the tissue damage found in homocystinuria. Therefore, it is proposed that the use of appropriate antioxidants may represent a novel adjuvant therapy for patients affected by this disease.


Assuntos
Cistationina beta-Sintase/deficiência , Modelos Animais de Doenças , Homocistinúria/metabolismo , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Encéfalo/metabolismo , Homocistinúria/patologia , Humanos
19.
Clin. biomed. res ; 37(1): 33-37, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-833278

RESUMO

Introduction: Recent evidence shows that oxidative stress seems to be related with the pathophysiology of X-linked adrenoleukodystrophy (X-ALD), a neurodegenerative disorder. Methods: In the present study, the in vitro effect of N-acetyl-L-cysteine (NAC) on glutathione (GSH) and sulfhydryl levels in X-ALD patients was evaluated. Results: A significant reduction of GSH and sulfhydryl content was observed in X-ALD patients compared to the control group. Furthermore, 5 mM of NAC, in vitro, led to an increase in GSH content and sulfhydryl groups in these patients. Conclusion: These data probably indicate that an adjuvant therapy with the antioxidant NAC could improve the oxidative imbalance in X-ALD patients(AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Adolescente , Adulto , Pessoa de Meia-Idade , Acetilcisteína/farmacologia , Adrenoleucodistrofia/fisiopatologia , Glutationa/deficiência , Compostos de Sulfidrila/metabolismo , Adrenoleucodistrofia/tratamento farmacológico , Oxirredução/efeitos dos fármacos , Estresse Oxidativo
20.
Clin Chim Acta ; 461: 41-6, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27458128

RESUMO

Fabry disease (FD) is caused by deficient activity of the lysosomal enzyme α-galactosidase A. Its substrates, mainly globotriaosylceramide (Gb3), accumulate and seem to induce other pathophysiological findings of FD. Once enzyme replacement therapy (ERT) is not completely efficient on preventing disease progress in FD patients, elucidating the underlying mechanisms in FD pathophysiology is essential to the development of additional therapeutic strategies. We investigated 58 Fabry patients (23 male and 35 female) subdivided into two groups (at diagnosis and during long-term ERT) and compared them to healthy individuals. Fabry patients at diagnosis presented altered glutathione (GSH) metabolism (higher GSH levels, lower glutathione peroxidase - GPx - and normal glutathione reductase - GR - activities), higher lipid peroxidation levels (thiobarbituric acid reactive species - TBARS - and malondialdehyde - MDA), nitric oxide (NO(.)) equivalents and urinary Gb3. Fabry patients on ERT presented GSH metabolism similar to controls, although lipid peroxidation and urinary levels of NO(.) equivalents remained higher whereas Gb3 levels were lower than at diagnosis but still higher than controls. These data demonstrated that redox impairment occurs in Fabry patients before and after ERT, probably as a consequence of Gb3 accumulation, providing targets to future therapy approaches using antioxidants in combination with ERT in FD.


Assuntos
Terapia de Reposição de Enzimas , Doença de Fabry/metabolismo , Doença de Fabry/terapia , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Adulto , Doença de Fabry/enzimologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...