Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(1): e0170038, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28076437

RESUMO

PURPOSE: Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. METHODS: Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. RESULTS: Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5-30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). CONCLUSIONS: Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular spectrum of PRPH2, PRPF8, RHO, RP1, SNRNP200, and TOPORS-associated adRP by the identification of 17 novel mutations.


Assuntos
Mutação , Fatores de Processamento de RNA/genética , Adulto , Idoso , Bélgica , Estudos de Coortes , Análise Mutacional de DNA , Proteínas do Olho/genética , Família , Feminino , Frequência do Gene , Genes Dominantes , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Retinose Pigmentar/genética
2.
Sci Rep ; 6: 21307, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887858

RESUMO

The aim of this study was to unravel the molecular pathogenesis of an unusual retinitis pigmentosa (RP) phenotype observed in a Turkish consanguineous family. Homozygosity mapping revealed two candidate genes, SAMD7 and RHO. A homozygous RHO mutation c.448G > A, p.E150K was found in two affected siblings, while no coding SAMD7 mutations were identified. Interestingly, four non-coding homozygous variants were found in two SAMD7 genomic regions relevant for binding of the retinal transcription factor CRX (CRX-bound regions, CBRs) in these affected siblings. Three variants are located in a promoter CBR termed CBR1, while the fourth is located more downstream in CBR2. Transcriptional activity of these variants was assessed by luciferase assays and electroporation of mouse retinal explants with reporter constructs of wild-type and variant SAMD7 CBRs. The combined CBR2/CBR1 variant construct showed significantly decreased SAMD7 reporter activity compared to the wild-type sequence, suggesting a cis-regulatory effect on SAMD7 expression. As Samd7 is a recently identified Crx-regulated transcriptional repressor in retina, we hypothesize that these SAMD7 variants might contribute to the retinal phenotype observed here, characterized by unusual, recognizable pigment deposits, differing from the classic spicular intraretinal pigmentation observed in other individuals homozygous for p.E150K, and typically associated with RP in general.


Assuntos
Proteínas de Homeodomínio , Mutação de Sentido Incorreto , Elementos de Resposta , Retinose Pigmentar , Rodopsina , Transativadores , Substituição de Aminoácidos , Animais , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Gravidez , Domínios Proteicos , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Transativadores/genética , Transativadores/metabolismo , Turquia
3.
Hum Mutat ; 36(1): 39-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25346251

RESUMO

Autosomal-recessive Stargardt disease (STGD1) is hallmarked by a large proportion of patients with a single heterozygous causative variant in the disease gene ABCA4. Braun et al. () reported deep intronic variants of ABCA4 in STGD1 patients with one coding variant, prompting us to perform an augmented screen in 131 Belgian STGD1 patients with one or no ABCA4 variant to uncover deep intronic causal ABCA4 variants. This revealed a second variant in 28.6% of cases. Twenty-six percent of these carry the same causal variant c.4539+2001G>A (V4). Haplotyping in V4 carriers showed a common region of 63 kb, suggestive of a founder mutation. Genotype-phenotype correlations suggest a moderate-to-severe impact of V4 on the STGD1 phenotype. In conclusion, V4 occurs in a high fraction of Belgian STGD1 patients and represents the first deep intronic founder mutation in ABCA4. This emphasizes the importance of augmented molecular genetic testing of ABCA4 in Belgian STGD1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Efeito Fundador , Degeneração Macular/congênito , Bélgica , Estudos de Associação Genética , Haplótipos , Humanos , Íntrons , Degeneração Macular/genética , Mutação , Doença de Stargardt
4.
Genet Med ; 16(9): 671-80, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24625443

RESUMO

PURPOSE: Autosomal recessive retinal dystrophies are clinically and genetically heterogeneous, which hampers molecular diagnosis. We evaluated identity-by-descent-guided Sanger sequencing or whole-exome sequencing in 26 families with nonsyndromic (19) or syndromic (7) autosomal recessive retinal dystrophies to identify disease-causing mutations. METHODS: Patients underwent genome-wide identity-by-descent mapping followed by Sanger sequencing (16) or whole-exome sequencing (10). Whole-exome sequencing data were filtered against identity-by-descent regions and known retinal dystrophy genes. The medical history was reviewed in mutation-positive families. RESULTS: We identified mutations in 14 known retinal dystrophy genes in 20/26 (77%) families: ABCA4, CERKL, CLN3, CNNM4, C2orf71, IQCB1, LRAT, MERTK, NMNAT1, PCDH15, PDE6B, RDH12, RPGRIP1, and USH2A. Whole-exome sequencing in single individuals revealed mutations in either the largest or smaller identity-by-descent regions, and a compound heterozygous genotype in NMNAT1. Moreover, a novel deletion was found in PCDH15. In addition, we identified mutations in CLN3, CNNM4, and IQCB1 in patients initially diagnosed with nonsyndromic retinal dystrophies. CONCLUSION: Our study emphasized that identity-by-descent-guided mutation analysis and/or whole-exome sequencing are powerful tools for the molecular diagnosis of retinal dystrophy. Our approach uncovered unusual molecular findings and unmasked syndromic retinal dystrophies, guiding future medical management. Finally, elucidating ABCA4, LRAT, and MERTK mutations offers potential gene-specific therapeutic perspectives.


Assuntos
Consanguinidade , Análise Mutacional de DNA , Exoma , Mutação , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Adolescente , Proteínas Relacionadas a Caderinas , Caderinas/genética , Criança , Pré-Escolar , Feminino , Genes Recessivos , Estudo de Associação Genômica Ampla , Homozigoto , Humanos , Masculino , Mutação de Sentido Incorreto , Oftalmoscópios , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Dente/patologia
5.
J Neuroophthalmol ; 34(2): 137-43, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24621862

RESUMO

Congenital fixed dilated pupils (congenital mydriasis) is characterized by hypoplasia or aplasia of the iris muscles, with absence of iris between the collarette and pupillary border, creating a scalloped pupillary margin. This condition has been reported in a multisystemic smooth muscle cell dysfunction syndrome, combined with congenital patent ductus arteriosus, cerebrovascular disease (Moya-moya-like), coronary artery disease, thoracic aorta aneurysm, and dysfunction of smooth muscle cells in organs throughout the body. All affected individuals carry a p.R179H heterozygous mutation in the ACTA2 gene. We add to the ophthalmologic involvement with 3 more patients. Congenital fixed dilated pupils is a rare condition and should alert ophthalmologists to the possibility of the coexistence of systemic life-threatening disorders.


Assuntos
Actinas/genética , Músculo Liso/patologia , Doenças Musculares/patologia , Distúrbios Pupilares/genética , Distúrbios Pupilares/patologia , Adolescente , Feminino , Humanos , Imageamento por Ressonância Magnética , Doenças Musculares/complicações , Doenças Musculares/genética , Distúrbios Pupilares/complicações , Adulto Jovem
6.
Mol Vis ; 17: 2072-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21850183

RESUMO

PURPOSE: Optic nerve aplasia (ONA, OMIM 165550) is a very rare unilateral or bilateral condition that leads to blindness in the affected eye, and is usually associated with other ocular abnormalities. Although bilateral ONA often occurs in association with severe congenital anomalies of the brain, nonsyndromic sporadic forms with bilateral ONA have been described. So far, no autosomal-dominant nonsyndromic ONA has been reported. The genetic basis of this condition remains largely unknown, as no developmental genes other than paired box gene 6 (PAX6) are known to be implicated in sporadic bilateral ONA. METHODS: The individuals reported underwent extensive ophthalmological, endocrinological, and neurologic evaluation, including neuroimaging of the visual pathways. In addition genomewide copy number screening was performed. RESULTS: Here we report an autosomal-dominant form of nonsyndromic ONA in a Belgian pedigree, with unilateral microphthalmia and ONA in the second generation (II:1), and bilateral ONA in two sibs of the third generation (III:1; III:2). No PAX6 mutation was found. Genome wide copy number screening revealed a microdeletion of maximal 363 kb of chromosome 10q23.33q23.33 in all affected individuals (II:1, III:1; III:2) and in unaffected I:1, containing three genes: exocyst complex component 6 (EXOC6), cytochrome p450, subfamily XXVIA, polypeptide 1 (CYP26A1), and cytochrome p450, subfamily XXVIC, polypeptide 1 (CYP26C1). The latter two encode retinoic acid-degrading enzymes. CONCLUSIONS: This is the first study reporting an autosomal-dominant form of nonsyndromic ONA. The diagnostic value of neuroimaging in uncovering ONA in microphthalmic patients is demonstrated. Although involvement of other genetic factors cannot be ruled out, our study might point to a role of CYP26A1 and CYP26C1 in the pathogenesis of nonsyndromic ONA.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Proteínas do Olho/genética , Microftalmia/genética , Nervo Óptico , Doenças Assintomáticas , Pré-Escolar , Mapeamento Cromossômico , Cromossomos Humanos Par 10/química , Cromossomos Humanos Par 10/genética , Família 26 do Citocromo P450 , Análise Mutacional de DNA , Feminino , Dosagem de Genes , Genes Dominantes , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Microftalmia/fisiopatologia , Pessoa de Meia-Idade , Mutação , Neuroimagem , Nervo Óptico/anormalidades , Nervo Óptico/metabolismo , Linhagem , Fenótipo , Ácido Retinoico 4 Hidroxilase , Tretinoína/metabolismo , Testes Visuais
7.
Eur J Hum Genet ; 18(7): 761-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20179738

RESUMO

The latent TGFbeta-binding proteins (LTBPs) and fibrillins are a superfamily of large, multidomain proteins with structural and TGFbeta-signalling roles in the extracellular matrix. Their importance is underscored by fibrillin-1 mutations responsible for Marfan syndrome, but their respective roles are still incompletely understood. We report here on two families where children from healthy, consanguineous parents, presented with megalocornea and impaired vision associated with small, round, dislocated lenses (microspherophakia and ectopia lentis) and myopia, as well as a high-arched palate, and, in older children, tall stature with an abnormally large arm span over body height ratio, that is, associated features of Marfan syndrome. Glaucoma was not present at birth, but was diagnosed in older children. Whole genome homozygosity mapping followed by candidate gene analysis identified homozygous truncating mutations of LTBP2 gene in patients from both families. Fibroblast mRNA analysis was consistent with nonsense-mediated mRNA decay, with no evidence of mutated exon skipping. We conclude that biallelic null LTBP2 mutations cause the ocular phenotype in both families and could lead to Marfan-like features in older children. We suggest that intraocular pressures should be followed-up in young children with an ocular phenotype consisting of megalocornea, spherophakia and/or lens dislocation, and recommend LTBP2 gene analysis in these patients.


Assuntos
Anormalidades do Olho/complicações , Anormalidades do Olho/genética , Genes Recessivos/genética , Glaucoma/complicações , Glaucoma/genética , Proteínas de Ligação a TGF-beta Latente/genética , Mutação/genética , Sequência de Bases , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Ligação Genética , Humanos , Lactente , Proteínas de Ligação a TGF-beta Latente/metabolismo , Masculino , Dados de Sequência Molecular , Linhagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome
8.
J Neurosci ; 25(31): 7232-7, 2005 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16079405

RESUMO

Topographic representation of visual fields from the retina to the brain is a central feature of vision. The development of retinotopic maps has been studied extensively in model organisms and is thought to be controlled in part by molecular labels, including ephrin/Eph axon guidance molecules, displayed in complementary gradients across the retina and its targeting areas. The visual system in these organisms is primarily monocular, with each retina mapping topographically to its contralateral target. In contrast, mechanisms of retinal mapping in binocular species such as primates, characterized by the congruent, aligned mapping of both retinas onto the same brain target, remain completely unknown. Here, we show that the distribution of ephrin/Eph genes in the human developing visual system is fundamentally different from what is known in model organisms. In the human embryonic retina, EphA receptors are displayed along two gradients, sloping down from the center of the retina to its periphery. The EphB1 receptor, which controls the ipsilateral routing of retinal axons in the mouse, is expressed throughout the human temporal retina in coordination with the changes in EphA gene expression. In the dorsal lateral geniculate nucleus, ephrin-A/EphAs are displayed along complementary retinotopic gradients. Our data point to an evolutionary model in which the coordinated divergence of the distribution of the receptors controlling retinal guidance and retinal mapping enabled the emergence of a fully binocular system. They also indicate that ephrin/Eph signaling plays a potentially major role in the development of neuronal connectivity in humans.


Assuntos
Evolução Biológica , Efrinas/metabolismo , Visão Binocular/fisiologia , Vias Visuais/embriologia , Efrina-B1/metabolismo , Efrinas/genética , Feto/metabolismo , Expressão Gênica , Corpos Geniculados/embriologia , Humanos , Receptores da Família Eph/metabolismo , Retina/embriologia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...