Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zookeys ; 1101: 131-158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36760973

RESUMO

Invertebrate immune priming is defined as an enhanced protection against secondary pathogenic infections when individuals have been previously exposed to the same or a different pathogen. Immune priming can be energetically costly for individuals, thus impacting trade-offs between life-history traits, like reproduction, growth, and lifetime. Here, the reproductive cost(s) and senescence patterns of immune priming against S.enterica in the common woodlouse A.vulgare (Crustacea, Isopoda) were investigated. Four different groups of females were used that either (1) have never been injected (control), (2) were injected twice with S.enterica (7 days between infections), (3) were firstly injected with LB-broth, then with S.enterica, and (4) females injected only once with S.enterica. All females were allowed to breed with one non-infected male and were observed for eight months. Then, the number of clutches produced, the time taken to produce the clutch(es), the number of offspring in each clutch, the senescence biomarkers of females, and parameters of their haemocytes were compared. The result was that immune priming did not significantly impact reproductive abilities, senescence patterns, and haemocyte parameters of female A.vulgare, but had an indirect effect through body weight. The lighter immune primed females took less time to produce the first clutch, which contained less offspring, but they were more likely to produce a second clutch. The opposite effects were observed in the heavier immune primed females. By highlighting that immune priming was not as costly as expected in A.vulgare, these results provide new insights into the adaptive nature of this immune process.

2.
J Evol Biol ; 33(9): 1256-1264, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574391

RESUMO

Reproductive senescence is the decrease of reproductive performance with increasing age and can potentially include trans-generational effects as the offspring produced by old parents might have a lower fitness than those produced by young parents. This negative effect may be caused either by the age of the father, mother or the interaction between the ages of both parents. Using the common woodlouse Armadillidium vulgare, an indeterminate grower, as a biological model, we tested for the existence of a deleterious effect of parental age on fitness components. Contrary to previous findings reported from vertebrate studies, old parents produced both a higher number and larger offspring than young parents. However, their offspring had lower fitness components (by surviving less, producing a smaller number of clutches or not reproducing at all) than offspring born to young parents. Our findings strongly support the existence of trans-generational senescence in woodlice and contradict the belief that old individuals in indeterminate growers contribute the most to recruitment and correspond thereby to the key life stage for population dynamics. Our work also provides rare evidence that the trans-generational effect of senescence can be stronger than direct reproductive senescence in indeterminate growers.


Assuntos
Envelhecimento/fisiologia , Aptidão Genética , Isópodes/crescimento & desenvolvimento , Idade Materna , Idade Paterna , Animais , Feminino , Masculino , Reprodução
3.
Genetica ; 145(6): 503-512, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28932924

RESUMO

Geographic information system (GIS) tools are designed to illustrate, analyse and integrate geographic or spatial data, usually on a macroscopic scale. By contrast, genetic tools focus on a microscopic scale. Because in reality, landscapes have no predefined scale, our original study aims to develop a new approach, combining both cartographic and genetic approaches to explore microscopic landscapes. For this, we focused on Armadillidium vulgare, a terrestrial isopod model in which evolutionary pressures imposed by terrestrial life have led to the development of internal fertilisation and, consequently, to associated physiological changes. Among these, the emergence of internal receptacles, found in many taxa ranging from mammals to arthropods, allowed females to store sperm from several partners, enabling multipaternity. Among arthropods, terrestrial isopods like the polygynandrous A. vulgare present a female structure, the marsupium, in which fertilised eggs migrate and develop into mancae (larval stage). To test our innovative combined approach, we proposed different males to four independent females, and at the end of incubation in the marsupium, we mapped (using GIS methods) and genotyped (using 12 microsatellite markers) all the incubated mancae. This methodology permitted to obtain spatio-genetic maps describing heterozygosity and spatial distribution of mancae and of multipaternity within the marsupial landscape. We discussed the interest of this kind of multidisciplinary approach which could improve in this case our understanding of sexual selection mechanisms in this terrestrial crustacean. Beyond the interesting model-focused insights, the main challenge of this study was the transfer of GIS techniques to a microscopic scale and our results appear so as pioneers rendering GIS tools available for studies involving imagery whatever their study scale.


Assuntos
Isópodes/fisiologia , Animais , Evolução Biológica , Feminino , Fertilização , Genótipo , Sistemas de Informação Geográfica , Isópodes/anatomia & histologia , Isópodes/genética , Masculino , Repetições de Microssatélites , Paridade , Filogeografia , Reprodução , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...