Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol Methods ; 300: 114405, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896458

RESUMO

The ability of begomoviruses to evolve rapidly threatens many crops and underscores the importance of detecting these viruses quickly and to understand their genome diversity. This study presents an improved protocol for the enhanced amplification and enrichment of begomovirus DNA for use in next generation sequencing of the viral genomes. An enhanced rolling circle amplification (RCA) method using EquiPhi29 polymerase was combined with size selection to generate a cost-effective, short-read sequencing method. This improved short-read sequencing produced at least 50 % of the reads mapping to the target viral reference genomes, African cassava mosaic virus and East African cassava mosaic virus. This study provided other insights into common misconceptions about RCA and lessons that could be learned from the sequencing of single-stranded DNA virus genomes. This protocol can be used to examine the viral DNA as it moves from host to vector, thus producing valuable information for viral DNA population studies, and would likely work well with other circular Rep-encoding ssDNA viruses (CRESS) DNA viruses.


Assuntos
Vírus de DNA , DNA Circular , Genoma Viral , Vírus de DNA/genética , DNA Circular/genética , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala
2.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310272

RESUMO

Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5' intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.


Assuntos
Begomovirus/genética , Variação Genética , Manihot/crescimento & desenvolvimento , Manihot/virologia , Doenças das Plantas/virologia , Sequência de Bases , Begomovirus/fisiologia , Códon , DNA Intergênico , DNA Viral/genética , Evolução Molecular , Genoma Viral , Mutação , Polimorfismo de Nucleotídeo Único , Vírus Satélites/genética , Vírus Satélites/fisiologia , Deleção de Sequência , Temperatura , Proteínas Virais/genética
3.
Microbiol Resour Announc ; 9(46)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184153

RESUMO

We deeply sequenced two pairs of widely used infectious clones (4 plasmids) of the bipartite begomoviruses African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV). The ACMV clones were quite divergent from published sequences. Raw reads, consensus plasmid sequences, and the infectious clones themselves are all publicly available.

4.
PLoS Genet ; 16(10): e1008623, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33052904

RESUMO

Plant cells undergo two types of cell cycles-the mitotic cycle in which DNA replication is coupled to mitosis, and the endocycle in which DNA replication occurs in the absence of cell division. To investigate DNA replication programs in these two types of cell cycles, we pulse labeled intact root tips of maize (Zea mays) with 5-ethynyl-2'-deoxyuridine (EdU) and used flow sorting of nuclei to examine DNA replication timing (RT) during the transition from a mitotic cycle to an endocycle. Comparison of the sequence-based RT profiles showed that most regions of the maize genome replicate at the same time during S phase in mitotic and endocycling cells, despite the need to replicate twice as much DNA in the endocycle and the fact that endocycling is typically associated with cell differentiation. However, regions collectively corresponding to 2% of the genome displayed significant changes in timing between the two types of cell cycles. The majority of these regions are small with a median size of 135 kb, shift to a later RT in the endocycle, and are enriched for genes expressed in the root tip. We found larger regions that shifted RT in centromeres of seven of the ten maize chromosomes. These regions covered the majority of the previously defined functional centromere, which ranged between 1 and 2 Mb in size in the reference genome. They replicate mainly during mid S phase in mitotic cells but primarily in late S phase of the endocycle. In contrast, the immediately adjacent pericentromere sequences are primarily late replicating in both cell cycles. Analysis of CENH3 enrichment levels in 8C vs 2C nuclei suggested that there is only a partial replacement of CENH3 nucleosomes after endocycle replication is complete. The shift to later replication of centromeres and possible reduction in CENH3 enrichment after endocycle replication is consistent with a hypothesis that centromeres are inactivated when their function is no longer needed.


Assuntos
Período de Replicação do DNA/genética , Replicação do DNA/efeitos dos fármacos , Raízes de Plantas/genética , Zea mays/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Centrômero/efeitos dos fármacos , Centrômero/genética , Replicação do DNA/genética , Período de Replicação do DNA/efeitos dos fármacos , DNA de Plantas/efeitos dos fármacos , DNA de Plantas/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Endocitose/efeitos dos fármacos , Meristema/efeitos dos fármacos , Meristema/genética , Mitose/efeitos dos fármacos , Mitose/genética , Nucleossomos/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Fase S/genética , Zea mays/crescimento & desenvolvimento
5.
Planta ; 216(4): 571-9, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12569398

RESUMO

Asymmetric divisions are key to regulating the number and patterning of stomata in Arabidopsis thaliana (L.) Heynh. Many formative asymmetric divisions take place in neighbor cells (NCs), cells adjacent to a stoma or stomatal precursor. TOO MANY MOUTHS is a receptor-like protein required for the correct plane of NC division, resulting in the placement of the new precursor distal to the pre-existing stoma. Because plant cells usually become polarized before asymmetric division, we studied whether NCs display a cytological asymmetry as a function of cell stage and of possible division behavior. Cells that divided in the developing leaf epidermis were smaller than 400 micro m(-2) in area and included NCs as well as isolated cells. All NCs in the youngest complexes divided with comparable frequencies, but divisions became restricted to the smaller and most recently produced NCs as the stomatal complex matured. The majority of developing NCs had distally located nuclei, suggesting that nuclear position is actively regulated in NCs. NC stages exhibiting distally located nuclei were the likeliest to divide asymmetrically. However, a distal nucleus did not necessarily predict an asymmetric division, because more NCs had distal nuclei than were likely to divide. No defect was detected in nuclear distribution in tmm NCs. These data suggest that TMM uses intercellular signals to control the plane of asymmetric division after or independently of nuclear positioning.


Assuntos
Arabidopsis/fisiologia , Epiderme Vegetal/fisiologia , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/fisiologia , Divisão Celular/fisiologia , Núcleo Celular/fisiologia , Polaridade Celular/fisiologia , Epiderme Vegetal/citologia , Epiderme Vegetal/crescimento & desenvolvimento , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...