Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Senses ; 492024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422390

RESUMO

Different animals have distinctive anatomical and physiological properties to their chemical senses that enhance detection and discrimination of relevant chemical cues. Humans and other vertebrates are recognized as having 2 main chemical senses, olfaction and gustation, distinguished from each other by their evolutionarily conserved neuroanatomical organization. This distinction between olfaction and gustation in vertebrates is not based on the medium in which they live because the most ancestral and numerous vertebrates, the fishes, live in an aquatic habitat and thus both olfaction and gustation occur in water and both can be of high sensitivity. The terms olfaction and gustation have also often been applied to the invertebrates, though not based on homology. Consequently, any similarities between olfaction and gustation in the vertebrates and invertebrates have resulted from convergent adaptations or shared constraints during evolution. The untidiness of assigning olfaction and gustation to invertebrates has led some to recommend abandoning the use of these terms and instead unifying them and others into a single category-chemical sense. In our essay, we compare the nature of the chemical senses of diverse animal types and consider their designation as olfaction, oral gustation, extra-oral gustation, or simply chemoreception. Properties that we have found useful in categorizing chemical senses of vertebrates and invertebrates include the nature of peripheral sensory cells, organization of the neuropil in the processing centers, molecular receptor specificity, and function.


Assuntos
Olfato , Paladar , Animais , Humanos , Olfato/fisiologia , Paladar/fisiologia , Percepção Gustatória , Peixes , Sinais (Psicologia)
2.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35226060

RESUMO

Our goal in this article is to provide a perspective on how to understand the nature of responses to chemical mixtures. In studying responses to mixtures, researchers often identify "mixture interactions"-responses to mixtures that are not accurately predicted from the responses to the mixture's individual components. Critical in these studies is how to predict responses to mixtures and thus to identify a mixture interaction. We explore this issue with a focus on olfaction and on the first level of neural processing-olfactory sensory neurons-although we use examples from taste systems as well and we consider responses beyond sensory neurons, including behavior and psychophysics. We provide a broadly comparative perspective that includes examples from vertebrates and invertebrates, from genetic and nongenetic animal models, and from literature old and new. In the end, we attempt to recommend how to approach these problems, including possible future research directions.


Assuntos
Neurônios Receptores Olfatórios , Olfato , Animais , Células Receptoras Sensoriais , Olfato/fisiologia
3.
PLoS One ; 16(6): e0252066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086685

RESUMO

Many studies have characterized class A GPCRs in crustaceans; however, their expression in crustacean chemosensory organs has yet to be detailed. Class A GPCRs comprise several subclasses mediating diverse functions. In this study, using sequence homology, we classified all putative class A GPCRs in two chemosensory organs (antennular lateral flagellum [LF] and walking leg dactyls) and brain of four species of decapod crustaceans (Caribbean spiny lobster Panulirus argus, American lobster Homarus americanus, red-swamp crayfish Procambarus clarkii, and blue crab Callinectes sapidus). We identified 333 putative class A GPCRs- 83 from P. argus, 81 from H. americanus, 102 from P. clarkii, and 67 from C. sapidus-which belong to five distinct subclasses. The numbers of sequences for each subclass in the four decapod species are (in parentheses): opsins (19), small-molecule receptors including biogenic amine receptors (83), neuropeptide receptors (90), leucine-rich repeat-containing GPCRs (LGRs) (24), orphan receptors (117). Most class A GPCRs are predominately expressed in the brain; however, we identified multiple transcripts enriched in the LF and several in the dactyl. In total, we found 55 sequences with higher expression in the chemosensory organs relative to the brain across three decapod species. We also identified novel transcripts enriched in the LF including a metabotropic histamine receptor and numerous orphan receptors. Our work establishes expression patterns for class A GPCRs in the chemosensory organs of crustaceans, providing insight into molecular mechanisms mediating neurotransmission, neuromodulation, and possibly chemoreception.


Assuntos
Células Quimiorreceptoras/metabolismo , Crustáceos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Encéfalo/metabolismo , Neurotransmissores/metabolismo , Transmissão Sináptica/fisiologia
4.
Biol Bull ; 240(2): 67-81, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33939945

RESUMO

AbstractThe crustacean first antenna, or antennule, has been an experimental model for studying sensory biology for over 150 years. Investigations have led to a clearer understanding of the functional organization of the antennule as an olfactory organ but also to a realization that the antennule is much more than that. Across the Crustacea, the antennules take on many forms and functions. As an example, the antennule of reptantian decapods has many types of sensilla, each with distinct structure and function and with hundreds of thousands of chemosensory neurons expressing hundreds of genes that code for diverse classes of receptor proteins. Together, these antennular sensilla represent multiple chemosensory pathways, each with its own central connections and functions. The antennule also has a diversity of sensors of mechanical stimuli, including vibrations, touch, water flow, and the animal's own movements. The antennule likely also detects other environmental cues, such as temperature, oxygen, pH, salinity, and noxious stimuli. Furthermore, the antennule is a motor organ-it is flicked to temporally and spatially sample the animal's chemo-mechanical surroundings-and this information is used in resolving the structure of chemical plumes and locating the odor source. The antennule is also adapted to maintain lifelong function in a changing environment. For example, it has specific secretory glands, grooming structures, and behaviors to stay clean and functional. Antennular sensilla and the annuli on which they reside are also added and replaced, leading to a complete turnover of the antennule over several molts. Thus, the antennule is a complex and dynamic sensory-motor integrator that is intricately engaged in most aspects of the lives of crustaceans.


Assuntos
Odorantes , Sensilas , Animais , Crustáceos , Estilo de Vida , Tato
5.
Artigo em Inglês | MEDLINE | ID: mdl-33392718

RESUMO

Animals that live in changing environments need to adjust their metabolism to maintain body functions, and sensing these changing conditions is essential for mediating the short- and long-term physiological and behavioral responses that make these adjustments. Previous research on nematodes and insects facing changing oxygen levels has shown that these animals rapidly respond using atypical soluble guanylyl cyclases (sGCs) as oxygen sensors connected to downstream cGMP pathways, and they respond more slowly using hypoxia-inducible transcription factors (HIFs) that are further modulated by oxygen-sensing prolyl hydroxylases (PHs). Crustaceans are known to respond in different ways to hypoxia, but the mechanisms responsible for sensing oxygen levels are more poorly understood than in nematodes and insects. Our paper reviews the functions of and mechanisms underlying oxygen sensing in crustaceans. Furthermore, using the oxygen sensing abilities of nematodes and insects as guides in analyzing available crustacean transcriptomes, we identified orthologues of atypical sGCs, HIFs, and PHs in crustaceans, including in their chemosensory organs and neurons. These molecules include atypical sGCs activated by hypoxia (Gyc-88E/GCY-31 and Gyc-89D/GCY-33) but not those activated by hyperoxia (GCY-35, GCY-36), as well as orthologues of HIF-α, HIF-ß, and PH. We offer possible directions for future research on oxygen sensing by crustaceans.


Assuntos
Crustáceos/fisiologia , Animais , Células Quimiorreceptoras/metabolismo , Neurônios/metabolismo , Oxigênio/metabolismo
6.
Biol Bull ; 239(2): 115-131, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33151752

RESUMO

AbstractThe Pacific white shrimp, Litopenaeus vannamei, is important as the principal species in the worldwide aquaculture of shrimp. It has also become a model in the study of crustacean biology, especially because it is one of the first decapod crustaceans to have its genome sequenced. This study examined an aspect of the sensory biology of this shrimp that is important in its aquaculture, by describing its peripheral chemical sensors and how they are used in acquiring and consuming food pellets. We used scanning electron microscopy to describe the diversity of sensilla on the shrimp's major chemosensory organs: antennules, antennae, mouthparts, and legs. Using behavioral studies on animals with selective sensory ablations, we then explored the roles that these chemosensory organs play in the shrimp's search for, and acquisition and ingestion of, food pellets. We found that the antennules mediate odor-activated searching for pellets, with both the lateral and medial antennular flagella contributing to this behavior and thus demonstrating that both aesthetasc (olfactory) and distributed chemosensors on the antennules can mediate this behavior. Once the shrimp finds and grasps the food pellet, the antennular chemoreceptors no longer play a role, and then the chemoreceptors on the mouthparts and legs control ingestion of the pellets. This sequence of chemosensory control of feeding in L. vannamei, a dendrobranchiate crustacean with small antennules and an ability to live and feed in both benthic and pelagic environments, is generally similar to that of the better-studied, large-antennuled, benthic reptantian crustaceans, including spiny lobsters (Achelata), clawed lobsters and crayfish (Astacidea), and crabs (Meirua).


Assuntos
Células Quimiorreceptoras , Penaeidae , Animais , Comportamento Alimentar , Odorantes , Sensilas , Olfato
7.
BMC Genomics ; 21(1): 649, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32962631

RESUMO

BACKGROUND: Crustaceans express several classes of receptor genes in their antennules, which house olfactory sensory neurons (OSNs) and non-olfactory chemosensory neurons. Transcriptomics studies reveal that candidate chemoreceptor proteins include variant Ionotropic Receptors (IRs) including both co-receptor IRs and tuning IRs, Transient Receptor Potential (TRP) channels, Gustatory Receptors, epithelial sodium channels, and class A G-protein coupled receptors (GPCRs). The Caribbean spiny lobster, Panulirus argus, expresses in its antennules nearly 600 IRs, 17 TRP channels, 1 Gustatory Receptor, 7 epithelial sodium channels, 81 GPCRs, 6 G proteins, and dozens of enzymes in signaling pathways. However, the specific combinatorial expression patterns of these proteins in single sensory neurons are not known for any crustacean, limiting our understanding of how their chemosensory systems encode chemical quality. RESULTS: The goal of this study was to use transcriptomics to describe expression patterns of chemoreceptor genes in OSNs of P. argus. We generated and analyzed transcriptomes from 7 single OSNs, some of which were shown to respond to a food odor, as well as an additional 7 multicell transcriptomes from preparations containing few (2-4), several (ca. 15), or many (ca. 400) OSNs. We found that each OSN expressed the same 2 co-receptor IRs (IR25a, IR93a) but not the other 2 antennular coIRs (IR8a, IR76b), 9-53 tuning IRs but only one to a few in high abundance, the same 5 TRP channels plus up to 5 additional TRPs, 12-17 GPCRs including the same 5 expressed in every single cell transcriptome, the same 3 G proteins plus others, many enzymes in the signaling pathways, but no Gustatory Receptors or epithelial sodium channels. The greatest difference in receptor expression among the OSNs was the identity of the tuning IRs. CONCLUSIONS: Our results provide an initial view of the combinatorial expression patterns of receptor molecules in single OSNs in one species of decapod crustacean, including receptors directly involved in olfactory transduction and others likely involved in modulation. Our results also suggest differences in receptor expression in OSNs vs. other chemosensory neurons.


Assuntos
Células Quimiorreceptoras/metabolismo , Palinuridae/genética , Transcriptoma , Animais , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Palinuridae/metabolismo , RNA-Seq , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Análise de Célula Única , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-32607762

RESUMO

Diverse animals use Earth's magnetic field to guide their movements, but the neural and molecular mechanisms underlying the magnetic sense remain enigmatic. One hypothesis is that particles of the mineral magnetite (Fe3O4) provide the basis of magnetoreception. Here we examined gene expression in the central nervous system of a magnetically sensitive invertebrate, the Caribbean spiny lobster (Panulirus argus), after applying a magnetic pulse known to alter magnetic orientation behavior. Numerous genes were differentially expressed in response to the pulse, including 647 in the brain, 1256 in the subesophageal ganglion, and 712 in the thoracic ganglia. Many such genes encode proteins linked to iron regulation, oxidative stress, and immune response, consistent with possible impacts of a magnetic pulse on magnetite-based magnetoreceptors. Additionally, however, altered expression also occurred for numerous genes with no apparent link to magnetoreception, including genes encoding proteins linked to photoreception, carbohydrate and hormone metabolism, and other physiological processes. Overall, the results are consistent with the magnetite hypothesis of magnetoreception, yet also reveal that in spiny lobsters, a strong pulse altered expression of > 10% of all expressed genes, including many seemingly unrelated to sensory processes. Thus, caution is required when interpreting the effects of magnetic pulses on animal behavior.


Assuntos
Palinuridae/efeitos da radiação , Animais , Comportamento Animal/efeitos da radiação , Região do Caribe , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos da radiação , Perfilação da Expressão Gênica , Campos Magnéticos , Orientação/fisiologia , Palinuridae/genética , Palinuridae/metabolismo , Transcriptoma/efeitos da radiação
9.
PLoS One ; 15(3): e0230266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163507

RESUMO

Crustaceans express genes for at least three classes of putative chemosensory proteins. These are: Ionotropic Receptors (IRs), derived from the heterotetrameric ionotropic glutamate receptors (iGluRs); Transient Receptor Potential (TRP) channels, a diverse set of sensor-channels that include several families of chemoreceptor channels; and Gustatory Receptor Like receptors (GRLs), ionotropic receptors that are homologues of Gustatory Receptors (GRs) of insects and are expressed sparingly in most crustaceans so far studied. IRs are typically numerically the most dominant of these receptor proteins in crustaceans and include two classes: co-receptor IRs, which are necessary for making a functional receptor-channel; and tuning IRs, whose specific combination in the IR subunits in the heterotetramer confers chemical specificity. Previous work showed that the transcriptomes from two major chemosensory organs-the lateral flagellum of the antennule (LF) and the tips of the legs (dactyls)-of the Caribbean spiny lobster Panulirus argus express four co-receptor IRs and over 100 tuning IRs. In this paper, we examined and compared the transcriptomes from the LF and dactyls of P. argus and three other decapod crustaceans-the clawed lobster Homarus americanus, red swamp crayfish Procambarus clarkii, and the blue crab Callinectes sapidus. Each species has at least ca. 100 to 250 IRs, 1 to 4 GRLs, and ca. 15 TRP channels including those shown to be involved in chemoreception in other species. The IRs show different degrees of phylogenetic conservation: some are arthropod-conserved, others are pancrustacean-conserved, others appear to be crustacean-conserved, and some appear to be species-specific. Many IRs appear to be more highly expressed in the LF than dactyl. Our results show that decapod crustaceans express an abundance of genes for chemoreceptor proteins of different types, phylogenetic conservation, and expression patterns. An understanding of their functional roles awaits determining their expression patterns in individual chemosensory neurons and the central projections of those neurons.


Assuntos
Decápodes/genética , Receptores Ionotrópicos de Glutamato/genética , Transcriptoma , Canais de Potencial de Receptor Transitório/genética , Animais , Evolução Molecular , Perfilação da Expressão Gênica , Filogenia , Receptores Ionotrópicos de Glutamato/classificação , Canais de Potencial de Receptor Transitório/classificação
10.
PLoS One ; 13(9): e0203935, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30240423

RESUMO

The spiny lobster, Panulirus argus, has two classes of chemosensilla representing "olfaction" and "distributed chemoreception," as is typical for decapod crustaceans. Olfactory sensilla are found exclusively on antennular lateral flagella and are innervated only by olfactory receptor neurons (ORNs) that project into olfactory lobes organized into glomeruli in the brain. Distributed chemoreceptor sensilla are found on all body surfaces including the antennular lateral flagella (LF) and walking leg dactyls (dactyls), and are innervated by both chemoreceptor neurons (CRNs) and mechanoreceptor neurons that project into somatotopically organized neuropils. Here, we examined expression of three classes of chemosensory genes in transcriptomes of the LF (with ORNs and CRNs), dactyls (with only CRNs), and brain of P. argus: Ionotropic Receptors (IRs), which are related to ionotropic glutamate receptors and found in all protostomes including crustaceans; Gustatory Receptors (GRs), which are ionotropic receptors that are abundantly expressed in insects but more restricted in crustaceans; and Transient Receptor Potential (TRP) channels, a diverse set of sensor-channels that include several chemosensors in diverse animals. We identified 108 IRs, one GR, and 18 homologues representing all seven subfamilies of TRP channels. The number of IRs expressed in the LF is far greater than in dactyls, possibly reflecting the contribution of receptor proteins associated with the ORNs beyond those associated with CRNs. We found co-receptor IRs (IR8a, IR25a, IR76b, IR93a) and conserved IRs (IR21a, IR40a) in addition to the numerous divergent IRs in the LF, dactyl, and brain. Immunocytochemistry showed that IR25a is expressed in ORNs, CRNs, and a specific type of cell located in the brain near the olfactory lobes. While the function of IRs, TRP channels, and the GR was not explored, our results suggest that P. argus has an abundance of diverse putative chemoreceptor proteins that it may use in chemoreception.


Assuntos
Células Quimiorreceptoras/fisiologia , Palinuridae/fisiologia , Sequência de Aminoácidos , Animais , Encéfalo/fisiologia , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Neurônios Receptores Olfatórios/fisiologia , Palinuridae/anatomia & histologia , Palinuridae/genética , Filogenia , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/fisiologia , Homologia de Sequência de Aminoácidos , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/fisiologia
11.
Biol Bull ; 235(1): 52-61, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30160994

RESUMO

Many marine animals use chemicals to defend themselves and their eggs from predators. Beyond their ecologically relevant functions, these chemicals may also have properties that make them beneficial for humans, including biomedical and industrial applications. For example, some chemical defenses are also powerful antimicrobial or antitumor agents with relevance to human health and disease. One such chemical defense, escapin, an l-amino acid oxidase in the defensive ink of the sea hare Aplysia californica, and related proteins have been investigated for their biomedical properties. This review details our current understanding of escapin's antimicrobial activity, including the array of molecules generated by escapin's oxidation of its major substrates, l-lysine and l-arginine, and mechanisms underlying these molecules' bactericidal and bacteriostatic effects on planktonic cells and the prevention of formation and removal of bacterial biofilms. Models of escapin's effects are presented, and future directions are proposed.


Assuntos
Antibacterianos/química , Aplysia/enzimologia , L-Aminoácido Oxidase/química , Animais , Antibacterianos/farmacologia , Aplysia/química , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , L-Aminoácido Oxidase/farmacologia
12.
Nat Prod Rep ; 34(5): 514-528, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28217773

RESUMO

Benthic marine invertebrates sense molecules from other organisms and use these molecules to find and evaluate the organisms as sources of food. These processes depend on the detection and discrimination of molecules carried in sea water around and in the mouths of these animals. To understand these processes, researchers have studied how molecules released from food distribute in the sea water as a plume, how animals respond to the plume, the molecular identity of the attractants in the plume, the effect of turbulence on food-searching success, and how animals evaluate the quality of food and make decisions to eat or not. This review covers recent progress on this topic involving interdisciplinary studies of natural products chemistry, fluid dynamics, neuroethology, and ecology.


Assuntos
Invertebrados/química , Animais , Organismos Aquáticos , Ecologia , Biologia Marinha , Estrutura Molecular
13.
Antimicrob Agents Chemother ; 60(9): 5554-62, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27401562

RESUMO

Escapin is an l-amino acid oxidase that acts on lysine to produce hydrogen peroxide (H2O2), ammonia, and equilibrium mixtures of several organic acids collectively called escapin intermediate products (EIP). Previous work showed that the combination of synthetic EIP and H2O2 functions synergistically as an antimicrobial toward diverse planktonic bacteria. We initiated the present study to investigate how the combination of EIP and H2O2 affected bacterial biofilms, using Pseudomonas aeruginosa as a model. Specifically, we examined concentrations of EIP and H2O2 that inhibited biofilm formation or fostered disruption of established biofilms. High-throughput assays of biofilm formation using microtiter plates and crystal violet staining showed a significant effect from pairing EIP and H2O2, resulting in inhibition of biofilm formation relative to biofilm formation in untreated controls or with EIP or H2O2 alone. Similarly, flow cell analysis and confocal laser scanning microscopy revealed that the EIP and H2O2 combination reduced the biomass of established biofilms relative to that of the controls. Area layer analysis of biofilms posttreatment indicated that disruption of biomass occurs down to the substratum. Only nanomolar to micromolar concentrations of EIP and H2O2 were required to impact biofilm formation or disruption, and these concentrations are significantly lower than those causing bactericidal effects on planktonic bacteria. Micromolar concentrations of EIP and H2O2 combined enhanced P. aeruginosa swimming motility compared to the effect of either EIP or H2O2 alone. Collectively, our results suggest that the combination of EIP and H2O2 may affect biofilms by interfering with bacterial attachment and destabilizing the biofilm matrix.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , L-Aminoácido Oxidase/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos
14.
Chem Senses ; 41(5): 381-98, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27107425

RESUMO

This review summarizes our present knowledge of chemoreceptor proteins in crustaceans, using a comparative perspective to review these molecules in crustaceans relative to other metazoan models of chemoreception including mammals, insects, nematodes, and molluscs. Evolution has resulted in unique expansions of specific gene families and repurposing of them for chemosensation in various clades, including crustaceans. A major class of chemoreceptor proteins across crustaceans is the Ionotropic Receptors, which diversified from ionotropic glutamate receptors in ancient protostomes but which are not present in deuterostomes. Representatives of another major class of chemoreceptor proteins-the Grl/GR/OR family of ionotropic 7-transmembrane receptors-are diversified in insects but to date have been reported in only one crustacean species, Daphnia pulex So far, canonic 7-transmembrane G-protein coupled receptors, the principal chemoreceptors in vertebrates and reported in a few protostome clades, have not been identified in crustaceans. More types of chemoreceptors are known throughout the metazoans and might well be expected to be discovered in crustaceans. Our review also provides a comparative coverage of perireceptor events in crustacean chemoreception, including molecules involved in stimulus acquisition, stimulus delivery, and stimulus removal, though much less is known about these events in crustaceans, particularly at the molecular level.


Assuntos
Crustáceos/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/metabolismo , Animais , Evolução Molecular , Insetos/metabolismo , Receptores de Superfície Celular/classificação , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Guanilato Ciclase/metabolismo , Receptores Odorantes/classificação , Olfato
15.
Mar Drugs ; 12(5): 2700-30, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24824020

RESUMO

One of the most distinctive and defining features of coleoid cephalopods-squid, cuttlefish and octopus-is their inking behavior. Their ink, which is blackened by melanin, but also contains other constituents, has been used by humans in various ways for millennia. This review summarizes our current knowledge of cephalopod ink. Topics include: (1) the production of ink, including the functional organization of the ink sac and funnel organ that produce it; (2) the chemical components of ink, with a focus on the best known of these-melanin and the biochemical pathways involved in its production; (3) the neuroecology of the use of ink in predator-prey interactions by cephalopods in their natural environment; and (4) the use of cephalopod ink by humans, including in the development of drugs for biomedical applications and other chemicals for industrial and other commercial applications. As is hopefully evident from this review, much is known about cephalopod ink and inking, yet more striking is how little we know. Towards closing that gap, future directions in research on cephalopod inking are suggested.


Assuntos
Cefalópodes/metabolismo , Tinta , Animais , Cefalópodes/classificação , Glândulas Exócrinas/fisiologia , Humanos , Melaninas/química , Comportamento Predatório
16.
Artigo em Inglês | MEDLINE | ID: mdl-24178131

RESUMO

We determined if a newly developed antennule slice preparation allows studying chemosensory properties of spiny lobster olfactory receptor neurons under in situ conditions with Ca(2+) imaging. We show that chemical stimuli reach the dendrites of olfactory receptor neurons but not their somata, and that odorant-induced Ca(2+) signals in the somata are sufficiently stable over time to allow stimulation with a substantial number of odorants. Pharmacological manipulations served to elucidate the source of odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons. Both Ca(2+) signals are primarily mediated by an influx of extracellular Ca(2+) through voltage-activated Ca(2+) channels that can be blocked by CoCl2 and the L-type Ca(2+) channel blocker verapamil. Intracellular Ca(2+) stores contribute little to odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations. The odorant-induced Ca(2+) transients as well as the spontaneous Ca(2+) oscillations depend on action potentials mediated by Na(+) channels that are largely TTX-insensitive but blocked by the local anesthetics tetracaine and lidocaine. Collectively, these results corroborate the conclusion that odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons closely reflect action potential activity associated with odorant-induced phasic-tonic responses and spontaneous bursting, respectively. Therefore, both types of Ca(2+) signals represent experimentally accessible proxies of spiking.


Assuntos
Cálcio/metabolismo , Potenciais da Membrana , Neurônios Receptores Olfatórios/fisiologia , Palinuridae/fisiologia , Olfato/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Espaço Extracelular/metabolismo , Feminino , Técnicas In Vitro , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Odorantes , Neurônios Receptores Olfatórios/efeitos dos fármacos , Imagem Óptica , Olfato/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo
17.
J Exp Biol ; 217(Pt 8): 1286-96, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24363413

RESUMO

Female blue crabs (Callinectes sapidus) in their pubertal moult stage release unidentified sex pheromone molecules in their urine, causing males to respond with courtship behaviours including a display called courtship stationary paddling and a form of precopulatory guarding called cradle carry. We hypothesized that pheromones are mixtures of molecules and are more concentrated in urine of pubertal premoult females compared with other moulting stages and thus that these molecules are biomarkers (i.e. metabolites that can be used as an indicator of some biological state or condition) of pubertal premoult females. We tested this hypothesis by combining bioassay-guided fractionation and biomarker targeting. To evaluate the molecular mass of the putative pheromone by bioassay-guided fractionation, we separated urine from pubertal premoult females and intermoult males by ultrafiltration into three molecular mass fractions. The <500 Da fraction and the 500-1000 Da fraction but not the >1000 Da fraction of female urine induced male courtship stationary paddling, but none of the fractions of male urine did. Thus, female urine contains molecules of <1000 Da that stimulate courtship behaviours in males. Biomarker targeting using nuclear magnetic resonance (NMR) spectral analysis of the 500-1000 Da fraction of urine from premoult and postmoult males and females revealed a premoult biomarker. Purification, nuclear magnetic resonance, mass spectrometry and high pressure liquid chromatography analysis of this premoult biomarker identified it as N-acetylglucosamino-1,5-lactone (NAGL) and showed that it is more abundant in urine of premoult females and males than in urine of either postmoult or juvenile females and males. NAGL has not been reported before as a natural product or as a molecule of the chitin metabolic pathway. Physiological and behavioural experiments demonstrated that blue crabs can detect NAGL through their olfactory pathway. Thus, we hypothesize that NAGL is a component of the sex pheromone and that it acts in conjunction with other yet unidentified components.


Assuntos
Acetilglucosamina/urina , Braquiúros/fisiologia , Atrativos Sexuais/urina , Animais , Biomarcadores/urina , Braquiúros/crescimento & desenvolvimento , Corte , Feminino , Masculino , Muda/fisiologia , Ressonância Magnética Nuclear Biomolecular
18.
J Exp Biol ; 216(Pt 8): 1364-72, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23536587

RESUMO

Antipredator defenses are ubiquitous and diverse. Ink secretion of sea hares (Aplysia) is an antipredator defense acting through the chemical senses of predators by different mechanisms. The most common mechanism is ink acting as an unpalatable repellent. Less common is ink secretion acting as a decoy (phagomimic) that misdirects predators' attacks. In this study, we tested another possible mechanism--sensory inactivation--in which ink inactivates the predator's reception of food odors associated with would-be prey. We tested this hypothesis using spiny lobsters, Panulirus argus, as model predators. Ink secretion is composed of two glandular products, one being opaline, a viscous substance containing concentrations of hundreds of millimolar of total free amino acids. Opaline sticks to antennules, mouthparts and other chemosensory appendages of lobsters, physically blocking access of food odors to the predator's chemosensors, or over-stimulating (short term) and adapting (long term) the chemosensors. We tested the sensory inactivation hypotheses by treating the antennules with opaline and mimics of its physical and/or chemical properties. We compared the effects of these treatments on responses to a food odor for chemoreceptor neurons in isolated antennules, as a measure of effect on chemosensory input, and for antennular motor responses of intact lobsters, as a measure of effect on chemically driven motor behavior. Our results indicate that opaline reduces the output of chemosensors by physically blocking reception of and response to food odors, and this has an impact on motor responses of lobsters. This is the first experimental demonstration of inactivation of peripheral sensors as an antipredatory defense.


Assuntos
Aplysia/fisiologia , Células Quimiorreceptoras/fisiologia , Odorantes , Palinuridae/fisiologia , Comportamento Predatório , Animais , Comportamento Alimentar , Atividade Motora , Odorantes/análise
19.
Biol Bull ; 225(3): 152-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24445441

RESUMO

Chemical and visual defenses are used by many organisms to avoid being approached or eaten by predators. An example is inking molluscs-including gastropods such as sea hares and cephalopods such as squid, cuttlefish, and octopus-which release a colored ink upon approach or attack. Previous work showed that ink can protect molluscs through a combination of chemical, visual, and other effects. In this study, we examined the effects of ink from longfin inshore squid, Doryteuthis pealeii, on the behavior of two species of predatory fishes, summer flounder, Paralichthys dentatus, and sea catfish, Ariopsis felis. Using a cloud assay, we found that ink from longfin inshore squid affected the approach phase of predation by summer flounder, primarily through its visual effects. Using a food assay, we found that the ink affected the consummatory and ingestive phase of predation of both sea catfish and summer flounder, through the ink's chemical properties. Fractionation of ink showed that most of its deterrent chemical activity is associated with melanin granules, suggesting that either compounds adhering to these granules or melanin itself are the most biologically active. This work provides the basis for a comparative approach to identify deterrent molecules from inking cephalopods and to examine neural mechanisms whereby these chemicals affect behavior of fish, using the sea catfish as a chemosensory model.


Assuntos
Peixes-Gato/fisiologia , Decapodiformes/química , Decapodiformes/fisiologia , Reação de Fuga/fisiologia , Linguado/fisiologia , Tinta , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Melaninas/análise , Melaninas/farmacologia , Comportamento Predatório/efeitos dos fármacos
20.
J Exp Biol ; 215(Pt 10): 1700-10, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22539737

RESUMO

Decapod crustaceans such as blue crabs possess a variety of chemoreceptors that control different stages of the feeding process. All these chemoreceptors are putative targets for feeding deterrents that cause animals to avoid or reject otherwise palatable food. As a first step towards characterizing the chemoreceptors that mediate the effect of deterrents, we used a behavioral approach to investigate their precise location. Data presented here demonstrate that chemoreceptors located on the antennules, pereiopods and mouthparts do not mediate the food-rejection effects of a variety of deterrents, both natural and artificial to crabs. Crabs always searched for deterrent-laced food and took it to their oral region. The deterrent effect was manifested as either rejection or extensive manipulation, but in both cases crabs bit the food. The biting behavior is relevant because the introduction of food into the oral cavity ensured that the deterrents gained access to the oesophageal taste receptors, and so we conclude that they are the ones mediating rejection. Additional support comes from the fact that a variety of deterrent compounds evoked oesophageal dilatation, which is mediated by oesophageal receptors and has been linked to food rejection. Further, there is a positive correlation between a compound's ability to elicit rejection and its ability to evoke oesophageal dilatation. The fact that deterrents do not act at a distance is in accordance with the limited solubility of most known feeding deterrents, and likely influences predator-prey interactions and their outcome: prey organisms will be attacked and bitten before deterrents become relevant.


Assuntos
Apetite , Braquiúros/fisiologia , Células Quimiorreceptoras/metabolismo , Esôfago/metabolismo , Comportamento Alimentar , Boca/fisiologia , Animais , Comportamento Animal , Relação Dose-Resposta a Droga , Ingestão de Alimentos , Esôfago/fisiologia , Feminino , Alimentos , Masculino , Mandíbula , Músculos/fisiologia , Neurônios/metabolismo , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...