Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311714, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501853

RESUMO

Nanocrystal self-assembly into supercrystals provides a versatile platform for creating novel materials and devices with tailored properties. While common self-assembly strategies imply the use of purified nanoparticles after synthesis, conversion of chemical precursors directly into nanocrystals and then supercrystals in simple procedures has been rarely reported. Here, the nucleation and growth of CuPd icosahedra and their consecutive assembly into large closed-packed face-centered cubic (fcc) supercrystals are studied. To this end, the study simultaneously and in situ measures X-ray total scattering with pair distribution function analysis (TS-PDF) and small-angle X-ray scattering (SAXS). It is found that the supercrystals' formation is preceded by an intermediate dense phase of nanocrystals displaying short-range order (SRO). It is further shown that the organization of oleic acid/oleylamine surfactants into lamellar structures likely drives the emergence of the SRO phase and later of the supercrystals by reducing the volume accessible to particle diffusion. The supercrystals' formation as well as their disassembly are triggered by temperature. The study demonstrates that ordering of solvent molecules can be crucial in the direct synthesis of supercrystals. The study also provides a general approach to investigate novel preparation routes of supercrystals in situ and across several length scales via X-ray scattering.

2.
Angew Chem Int Ed Engl ; 62(43): e202307948, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37635657

RESUMO

CuBi2 O4 has recently emerged as a promising photocathode for photo-electrochemical (PEC) water splitting. However, its fast degradation under operation currently poses a limit to its application. Here, we report a novel method to study operando the semiconductor-electrolyte interface during PEC operation by surface-sensitive high-energy X-ray scattering. We find that a fast decrease in the generated photocurrents correlates directly with the formation of a metallic Bi phase. We further show that the slower formation of metallic Cu, as well as the dissolution of the electrode in contact with the electrolyte, further affect the CuBi2 O4 activity and morphology. Our study provides a comprehensive picture of the degradation mechanisms affecting CuBi2 O4 electrodes under operation and poses the methodological basis to investigate the photocorrosion processes affecting a wide range of PEC materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA