Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 4(1): 62, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570605

RESUMO

BACKGROUND: The fight against COVID-19 requires mass vaccination strategies, and vaccines inducing durable cross-protective responses are still needed. Inactivated vaccines have proven lasting efficacy against many pathogens and good safety records. They contain multiple protein antigens that may improve response breadth and can be easily adapted every year to maintain preparedness for future seasonally emerging variants. METHODS: The vaccine dose was determined using ELISA and pseudoviral particle-based neutralization assay in the mice. The immunogenicity was assessed in the non-human primates with multiplex ELISA, neutralization assays, ELISpot and intracellular staining. The efficacy was demonstrated by viral quantification in fluids using RT-qPCR and respiratory tissue lesions evaluation. RESULTS: Here we report the immunogenicity and efficacy of VLA2001 in animal models. VLA2001 formulated with alum and the TLR9 agonist CpG 1018™ adjuvant generate a Th1-biased immune response and serum neutralizing antibodies in female BALB/c mice. In male cynomolgus macaques, two injections of VLA2001 are sufficient to induce specific and polyfunctional CD4+ T cell responses, predominantly Th1-biased, and high levels of antibodies neutralizing SARS-CoV-2 infection in cell culture. These antibodies also inhibit the binding of the Spike protein to human ACE2 receptor of several variants of concern most resistant to neutralization. After exposure to a high dose of homologous SARS-CoV-2, vaccinated groups exhibit significant levels of protection from viral replication in the upper and lower respiratory tracts and from lung tissue inflammation. CONCLUSIONS: We demonstrate that the VLA2001 adjuvanted vaccine is immunogenic both in mouse and NHP models and prevent cynomolgus macaques from the viruses responsible of COVID-19.


Mass vaccination in response to the COVID-19 pandemic has substantially reduced the number of severe cases and hospitalizations. As the virus continues to evolve and give rise to new variants that cause local outbreaks, there is a need to develop new vaccine candidates capable of stopping the viral transmission. In this study, we explore the immune responses induced by the vaccine candidate VLA2001 in animal models. We highlight the vaccine's ability to induce an immune response capable of blocking the virus and eliminating infected cells. We show that it can protect the host from developing severe disease.

2.
J Virol ; 98(5): e0151623, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38567951

RESUMO

The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Macaca fascicularis , Vacina contra Febre Amarela , Febre Amarela , Vírus da Febre Amarela , Animais , Vacina contra Febre Amarela/imunologia , Humanos , Febre Amarela/prevenção & controle , Febre Amarela/imunologia , Febre Amarela/virologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vírus da Febre Amarela/imunologia , Vacinação , Masculino , Feminino , Modelos Animais de Doenças , Adulto , Imunidade Inata , Biologia de Sistemas/métodos
3.
Nat Commun ; 15(1): 178, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212337

RESUMO

HIV remission can be achieved in some people, called post-treatment HIV controllers, after antiretroviral treatment discontinuation. Treatment initiation close to the time of infection was suggested to favor post-treatment control, but the circumstances and mechanisms leading to this outcome remain unclear. Here we evaluate the impact of early (week 4) vs. late (week 24 post-infection) treatment initiation in SIVmac251-infected male cynomolgus macaques receiving 2 years of therapy before analytical treatment interruption. We show that early treatment strongly promotes post-treatment control, which is not related to a lower frequency of infected cells at treatment interruption. Rather, early treatment favors the development of long-term memory CD8+ T cells with enhanced proliferative and SIV suppressive capacity that are able to mediate a robust secondary-like response upon viral rebound. Our model allows us to formally demonstrate a link between treatment initiation during primary infection and the promotion of post-treatment control and provides results that may guide the development of new immunotherapies for HIV remission.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Linfócitos T CD8-Positivos , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Carga Viral
4.
Mucosal Immunol ; 17(1): 25-40, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37827377

RESUMO

SARS-CoV-2 infection has been associated with intestinal mucosal barrier damage, leading to microbial and endotoxin translocation, heightened inflammatory responses, and aggravated disease outcomes. This study aimed to investigate the immunological mechanisms associated with impaired intestinal barrier function. We conducted a comprehensive analysis of gut damage and inflammation markers and phenotypic characterization of myeloid and lymphoid populations in the ileum and colon of SARS-CoV-2-exposed macaques during both the acute and resolved infection phases. Our findings revealed a significant accumulation of terminally differentiated and activated CD4+ and CD8+ T cells, along with memory B cells, within the gastrointestinal tract up to 43 days after exposure to SARS-CoV-2. This robust infection-induced immune response was accompanied by a notable depletion of plasmacytoid dendritic cells, myeloid dendritic cells, and macrophages, particularly affecting the colon during the resolved infection phase. Additionally, we identified a population of CX3CR1Low inflammatory macrophages associated with intestinal damage during active viral replication. Elevated levels of immune activation and gut damage markers, and perturbation of macrophage homeostasis, persisted even after the resolution of the infection, suggesting potential long-term clinical sequelae. These findings enhance our understanding of gastrointestinal immune pathology following SARS-CoV-2 infection and provide valuable information for developing and testing medical countermeasures.


Assuntos
COVID-19 , Animais , COVID-19/patologia , SARS-CoV-2 , Mucosa Intestinal , Inflamação , Primatas
5.
Nat Commun ; 14(1): 6224, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803011

RESUMO

Passive immunization using broadly neutralizing antibodies (bNAbs) is investigated in clinical settings to inhibit HIV-1 acquisition due to the lack of a preventive vaccine. However, bNAbs efficacy against highly infectious cell-associated virus transmission has been overlooked. HIV-1 transmission mediated by infected cells present in body fluids likely dominates infection and aids the virus in evading antibody-based immunity. Here, we show that the anti-N-glycans/V3 loop HIV-1 bNAb 10-1074 formulated for topical vaginal application in a microbicide gel provides significant protection against repeated cell-associated SHIV162P3 vaginal challenge in non-human primates. The treated group has a significantly lower infection rate than the control group, with 5 out of 6 animals fully protected from the acquisition of infection. The findings suggest that mucosal delivery of potent bnAbs may be a promising approach for preventing transmission mediated by infected cells and support the use of anti-HIV-antibody-based strategies as potential microbicides in human clinical trials.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Feminino , Humanos , Anticorpos Amplamente Neutralizantes , Macaca , Anticorpos Neutralizantes , Anticorpos Anti-HIV
6.
J Infect ; 87(6): 524-537, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852477

RESUMO

OBJECTIVES: Due to the rapid evolution of SARS-CoV-2 to variants with reduced sensitivity to vaccine-induced humoral immunity and the near complete loss of protective efficacy of licensed therapeutic monoclonal antibodies, we isolated a potent, broad-spectrum neutralizing antibody that could potentially provide prophylactic protection to immunocompromised patient populations. METHODS: Spike-specific B-cell clones isolated from a vaccinated post-infected donor were profiled for those producing potent neutralizing antibodies against a panel of SARS-CoV-2 variants. The P4J15 antibody was further characterized to define the structural binding epitope, viral resistance, and in vivo efficacy. RESULTS: The P4J15 mAb shows <20 ng/ml neutralizing activity against all variants including the latest XBB.2.3 and EG.5.1 sub-lineages. Structural studies of P4J15 in complex with Omicron XBB.1 Spike show that the P4J15 epitope shares ∼93% of its buried surface area with the ACE2 contact region, consistent with an ACE2 mimetic antibody. In vitro selection of SARS-CoV-2 mutants escaping P4J15 neutralization showed reduced infectivity, poor ACE2 binding, and mutations are rare in public sequence databases. Using a SARS-CoV-2 XBB.1.5 monkey challenge model, P4J15-LS confers complete prophylactic protection with an exceptionally long in vivo half-life of 43 days. CONCLUSIONS: The P4J15 mAb has potential as a broad-spectrum anti-SARS-CoV-2 drug for prophylactic protection of at-risk patient populations.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Animais , Haplorrinos
7.
Nat Biomed Eng ; 7(9): 1142-1155, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37679570

RESUMO

Inducing antigen-specific tolerance during an established immune response typically requires non-specific immunosuppressive signalling molecules. Hence, standard treatments for autoimmunity trigger global immunosuppression. Here we show that established antigen-specific responses in effector T cells and memory T cells can be suppressed by a polymer glycosylated with N-acetylgalactosamine (pGal) and conjugated to the antigen via a self-immolative linker that allows for the dissociation of the antigen on endocytosis and its presentation in the immunoregulatory environment. We show that pGal-antigen therapy induces antigen-specific tolerance in a mouse model of experimental autoimmune encephalomyelitis (with programmed cell-death-1 and the co-inhibitory ligand CD276 driving the tolerogenic responses), as well as the suppression of antigen-specific responses to vaccination against a DNA-based simian immunodeficiency virus in non-human primates. Our findings show that pGal-antigen therapy invokes mechanisms of immune tolerance to resolve antigen-specific inflammatory T-cell responses and suggest that the therapy may be applicable across autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Tolerância Imunológica , Animais , Camundongos , Autoimunidade , Glicosilação , Acetilgalactosamina , Encefalomielite Autoimune Experimental/terapia
8.
PLoS Pathog ; 19(8): e1011532, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37531329

RESUMO

The COVID-19 pandemic represents a global challenge that has impacted and is expected to continue to impact the lives and health of people across the world for the foreseeable future. The rollout of vaccines has provided highly anticipated relief, but effective therapeutics are required to further reduce the risk and severity of infections. Monoclonal antibodies have been shown to be effective as therapeutics for SARS-CoV-2, but as new variants of concern (VoC) continue to emerge, their utility and use have waned due to limited or no efficacy against these variants. Furthermore, cumbersome systemic administration limits easy and broad access to such drugs. As well, concentrations of systemically administered antibodies in the mucosal epithelium, a primary site of initial infection, are dependent on neonatal Fc receptor mediated transport and require high drug concentrations. To reduce the viral load more effectively in the lung, we developed an inhalable formulation of a SARS-CoV-2 neutralizing antibody binding to a conserved epitope on the Spike protein, ensuring pan-neutralizing properties. Administration of this antibody via a vibrating mesh nebulization device retained antibody integrity and resulted in effective distribution of the antibody in the upper and lower respiratory tract of non-human primates (NHP). In comparison with intravenous administration, significantly higher antibody concentrations can be obtained in the lung, resulting in highly effective reduction in viral load post SARS-CoV-2 challenge. This approach may reduce the barriers of access and uptake of antibody therapeutics in real-world clinical settings and provide a more effective blueprint for targeting existing and potentially emerging respiratory tract viruses.


Assuntos
Antivirais , COVID-19 , Animais , Humanos , SARS-CoV-2 , Pandemias , Anticorpos Antivirais , Anticorpos Neutralizantes , Epitopos , Glicoproteína da Espícula de Coronavírus
9.
PLoS Comput Biol ; 19(8): e1010721, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37556476

RESUMO

The impact of variants of concern (VoC) on SARS-CoV-2 viral dynamics remains poorly understood and essentially relies on observational studies subject to various sorts of biases. In contrast, experimental models of infection constitute a powerful model to perform controlled comparisons of the viral dynamics observed with VoC and better quantify how VoC escape from the immune response. Here we used molecular and infectious viral load of 78 cynomolgus macaques to characterize in detail the effects of VoC on viral dynamics. We first developed a mathematical model that recapitulate the observed dynamics, and we found that the best model describing the data assumed a rapid antigen-dependent stimulation of the immune response leading to a rapid reduction of viral infectivity. When compared with the historical variant, all VoC except beta were associated with an escape from this immune response, and this effect was particularly sensitive for delta and omicron variant (p<10-6 for both). Interestingly, delta variant was associated with a 1.8-fold increased viral production rate (p = 0.046), while conversely omicron variant was associated with a 14-fold reduction in viral production rate (p<10-6). During a natural infection, our models predict that delta variant is associated with a higher peak viral RNA than omicron variant (7.6 log10 copies/mL 95% CI 6.8-8 for delta; 5.6 log10 copies/mL 95% CI 4.8-6.3 for omicron) while having similar peak infectious titers (3.7 log10 PFU/mL 95% CI 2.4-4.6 for delta; 2.8 log10 PFU/mL 95% CI 1.9-3.8 for omicron). These results provide a detailed picture of the effects of VoC on total and infectious viral load and may help understand some differences observed in the patterns of viral transmission of these viruses.


Assuntos
COVID-19 , Animais , SARS-CoV-2/genética , Movimento Celular , Macaca fascicularis , Primatas
10.
Heliyon ; 9(6): e16664, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37287613

RESUMO

The SARS-CoV2 Omicron variants have acquired new Spike mutations leading to escape from the most of the currently available monoclonal antibody treatments reducing the options for patients suffering from severe Covid-19. Recently, both in vitro and in vivo data have suggested that Sotrovimab could retain partial activity against recent omicron sub-lineage such as BA.5 variants, including BQ.1.1. Here we report full efficacy of Sotrovimab against BQ.1.1 viral replication as measure by RT-qPCR in a non-human primate challengemodel.

11.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865310

RESUMO

After clean drinking water, vaccination is the most impactful global health intervention. However, development of new vaccines against difficult-to-target diseases is hampered by the lack of diverse adjuvants for human use. Of particular interest, none of the currently available adjuvants induce Th17 cells. Here, we develop and test an improved liposomal adjuvant, termed CAF®10b, that incorporates a TLR-9 agonist. In a head-to-head study in non-human primates (NHPs), immunization with antigen adjuvanted with CAF®10b induced significantly increased antibody and cellular immune responses compared to previous CAF® adjuvants, already in clinical trials. This was not seen in the mouse model, demonstrating that adjuvant effects can be highly species specific. Importantly, intramuscular immunization of NHPs with CAF®10b induced robust Th17 responses that were observed in circulation half a year after vaccination. Furthermore, subsequent instillation of unadjuvanted antigen into the skin and lungs of these memory animals led to significant recall responses including transient local lung inflammation observed by Positron Emission Tomography-Computed Tomography (PET-CT), elevated antibody titers, and expanded systemic and local Th1 and Th17 responses, including >20% antigen-specific T cells in the bronchoalveolar lavage. Overall, CAF®10b demonstrated an adjuvant able to drive true memory antibody, Th1 and Th17 vaccine-responses across rodent and primate species, supporting its translational potential.

12.
Front Immunol ; 13: 1057375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505459

RESUMO

It is of international priority to develop a vaccine against sexually transmitted Chlamydia trachomatis infections to combat the continued global spread of the infection. The optimal immunization strategy still remains to be fully elucidated. The aim of this study was to evaluate immunization strategies in a nonhuman primate (NHP) model. Cynomolgus macaques (Macaqua fascicularis) were immunized following different multi-component prime-boost immunization-schedules and subsequently challenged with C. trachomatis SvD in the lower genital tract. The immunization antigens included the recombinant protein antigen CTH522 adjuvanted with CAF01 or aluminium hydroxide, MOMP DNA antigen and MOMP vector antigens (HuAd5 MOMP and MVA MOMP). All antigen constructs were highly immunogenic raising significant systemic C. trachomatis-specific IgG responses. In particularly the CTH522 protein vaccinated groups raised a fast and strong pecificsIgG in serum. The mapping of specific B cell epitopes within the MOMP showed that all vaccinated groups, recognized epitopes near or within the variable domains (VD) of MOMP, with a consistent VD4 response in all animals. Furthermore, serum from all vaccinated groups were able to in vitro neutralize both SvD, SvE and SvF. Antibody responses were reflected on the vaginal and ocular mucosa, which showed detectable levels of IgG. Vaccines also induced C. trachomatis-specific cell mediated responses, as shown by in vitro stimulation and intracellular cytokine staining of peripheral blood mononuclear cells (PBMCs). In general, the protein (CTH522) vaccinated groups established a multifunctional CD4 T cell response, whereas the DNA and Vector vaccinated groups also established a CD8 T cells response. Following vaginal challenge with C. trachomatis SvD, several of the vaccinated groups showed accelerated clearance of the infection, but especially the DNA group, boosted with CAF01 adjuvanted CTH522 to achieve a balanced CD4/CD8 T cell response combined with an IgG response, showed accelerated clearance of the infection.


Assuntos
Chlamydia trachomatis , Leucócitos Mononucleares , Animais , Feminino , Vacinação , Imunização , Primatas , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Imunoglobulina G
13.
Pharmaceutics ; 14(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365101

RESUMO

The development of animal models undergoing long-term antiretroviral treatment (ART) makes it possible to understand a number of immunological, virological, and pharmacological issues, key factors in the management of HIV infection. We aimed to pharmacologically validate a non-human primate (NHP) model treated in the long term with antiretroviral drugs after infection with the pathogenic SIVmac251 strain. A single-dose pharmacokinetic study of tenofovir disoproxil fumarate, emtricitabine, and dolutegravir was first conducted on 13 non-infected macaques to compare three different routes of administration. Then, 12 simian immunodeficiency virus (SIV)-infected (SIV+) macaques were treated with the same regimen for two years. Drug monitoring, virological efficacy, and safety were evaluated throughout the study. For the single-dose pharmacokinetic study, 24-h post-dose plasma concentrations for all macaques were above or close to 90% inhibitory concentrations and consistent with human data. During the two-year follow-up, the pharmacological data were consistent with those observed in humans, with low inter- and intra-individual variability. Rapid and sustained virological efficacy was observed for all macaques, with a good safety profile. Overall, our SIV+ NHP model treated with the ART combination over a two-year period is suitable for investigating the question of pharmacological sanctuaries in HIV infection and exploring strategies for an HIV cure.

14.
Cell Rep Med ; 3(10): 100751, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36167072

RESUMO

Given the time and resources invested in clinical trials, innovative prediction methods are needed to decrease late-stage failure in vaccine development. We identify combinations of early innate responses that predict neutralizing antibody (nAb) responses induced in HIV-Env SOSIP immunized cynomolgus macaques using various routes of vaccine injection and adjuvants. We analyze blood myeloid cells before and 24 h after each immunization by mass cytometry using a three-step clustering, and we discriminate unique vaccine signatures based on HLA-DR, CD39, CD86, CD11b, CD45, CD64, CD14, CD32, CD11c, CD123, CD4, CD16, and CADM1 surface expression. Various combinations of these markers characterize cell families positively associated with nAb production, whereas CADM1-expressing cells are negatively associated (p < 0.05). Our results demonstrate that monitoring immune signatures during early vaccine development could assist in identifying biomarkers that predict vaccine immunogenicity.


Assuntos
HIV-1 , Animais , Macaca , Subunidade alfa de Receptor de Interleucina-3 , Anticorpos Anti-HIV , Anticorpos Neutralizantes
15.
Nat Commun ; 13(1): 5108, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042198

RESUMO

The COVID-19 pandemic has exemplified that rigorous evaluation in large animal models is key for translation from promising in vitro results to successful clinical implementation. Among the drugs that have been largely tested in clinical trials but failed so far to bring clear evidence of clinical efficacy is favipiravir, a nucleoside analogue with large spectrum activity against several RNA viruses in vitro and in small animal models. Here, we evaluate the antiviral activity of favipiravir against Zika or SARS-CoV-2 virus in cynomolgus macaques. In both models, high doses of favipiravir are initiated before infection and viral kinetics are evaluated during 7 to 15 days after infection. Favipiravir leads to a statistically significant reduction in plasma Zika viral load compared to untreated animals. However, favipiravir has no effects on SARS-CoV-2 viral kinetics, and 4 treated animals have to be euthanized due to rapid clinical deterioration, suggesting a potential role of favipiravir in disease worsening in SARS-CoV-2 infected animals. To summarize, favipiravir has an antiviral activity against Zika virus but not against SARS-CoV-2 infection in the cynomolgus macaque model. Our results support the clinical evaluation of favipiravir against Zika virus but they advocate against its use against SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecção por Zika virus , Zika virus , Amidas , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Macaca fascicularis , Pandemias , Primatas , Pirazinas , SARS-CoV-2 , Infecção por Zika virus/tratamento farmacológico
16.
Elife ; 112022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801637

RESUMO

The definition of correlates of protection is critical for the development of next-generation SARS-CoV-2 vaccine platforms. Here, we propose a model-based approach for identifying mechanistic correlates of protection based on mathematical modelling of viral dynamics and data mining of immunological markers. The application to three different studies in non-human primates evaluating SARS-CoV-2 vaccines based on CD40-targeting, two-component spike nanoparticle and mRNA 1273 identifies and quantifies two main mechanisms that are a decrease of rate of cell infection and an increase in clearance of infected cells. Inhibition of RBD binding to ACE2 appears to be a robust mechanistic correlate of protection across the three vaccine platforms although not capturing the whole biological vaccine effect. The model shows that RBD/ACE2 binding inhibition represents a strong mechanism of protection which required significant reduction in blocking potency to effectively compromise the control of viral replication.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Primatas/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
Nat Microbiol ; 7(9): 1376-1389, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35879526

RESUMO

The SARS-CoV-2 Omicron variant has very high levels of transmission, is resistant to neutralization by authorized therapeutic human monoclonal antibodies (mAb) and is less sensitive to vaccine-mediated immunity. To provide additional therapies against Omicron, we isolated a mAb named P2G3 from a previously infected vaccinated donor and showed that it has picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other variants tested. We solved the structure of P2G3 Fab in complex with the Omicron spike using cryo-electron microscopy at 3.04 Å resolution to identify the P2G3 epitope as a Class 3 mAb that is different from mAb-binding spike epitopes reported previously. Using a SARS-CoV-2 Omicron monkey challenge model, we show that P2G3 alone, or in combination with P5C3 (a broadly active Class 1 mAb previously identified), confers complete prophylactic or therapeutic protection. Although we could select for SARS-CoV-2 mutants escaping neutralization by P2G3 or by P5C3 in vitro, they had low infectivity and 'escape' mutations are extremely rare in public sequence databases. We conclude that this combination of mAbs has potential as an anti-Omicron drug.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Microscopia Crioeletrônica , Epitopos , Haplorrinos , Humanos , Glicoproteínas de Membrana , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
18.
JCI Insight ; 7(14)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35700051

RESUMO

Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus responsible for numerous outbreaks. Chikungunya can cause debilitating acute and chronic disease. Thus, the development of a safe and effective CHIKV vaccine is an urgent global health priority. This study evaluated the effectiveness of the live-attenuated CHIKV vaccine VLA1553 against WT CHIKV infection by using passive transfer of sera from vaccinated volunteers to nonhuman primates (NHP) subsequently exposed to WT CHIKV and established a serological surrogate of protection. We demonstrated that human VLA1553 sera transferred to NHPs conferred complete protection from CHIKV viremia and fever after challenge with homologous WT CHIKV. In addition, serum transfer protected animals from other CHIKV-associated clinical symptoms and from CHIKV persistence in tissue. Based on this passive transfer study, a 50% micro-plaque reduction neutralization test titer of ≥ 150 was determined as a surrogate of protection, which was supported by analysis of samples from a seroepidemiological study. In conclusion, considering the unfeasibility of an efficacy trial due to the unpredictability and explosive, rapidly moving nature of chikungunya outbreaks, the definition of a surrogate of protection for VLA1553 is an important step toward vaccine licensure to reduce the medical burden caused by chikungunya.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Anticorpos Antivirais , Febre de Chikungunya/prevenção & controle , Humanos , Estudos Soroepidemiológicos , Vacinas Atenuadas
19.
Commun Biol ; 5(1): 542, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661814

RESUMO

The well documented association between obesity and the severity of SARS-CoV-2 infection raises the question of whether adipose tissue (AT) is impacted during this infection. Using a model of SARS-CoV-2 infection in cynomolgus macaques, we detected the virus within subcutaneous AT (SCAT) but not in visceral AT (VAT) or epicardial AT on day 7 post-infection. We sought to determine the mechanisms responsible for this selective detection and observed higher levels of angiotensin-converting-enzyme-2 mRNA expression in SCAT than in VAT. Lastly, we evaluated the immunological consequences of SARS-CoV-2 infection on AT: both SCAT and VAT T cells showed a drastic reduction in CD69 expression, a standard marker of resident memory T cell in tissue, that is also involved in the migratory and metabolic properties of T cells. Our results demonstrate that in a model of mild infection, SCAT is selectively infected by SARS-CoV-2 although changes in the immune properties of AT are observed in both SCAT and VAT.


Assuntos
COVID-19 , SARS-CoV-2 , Tecido Adiposo , Animais , Homeostase , Linfócitos , Macaca , Gordura Subcutânea/metabolismo
20.
iScience ; 25(6): 104346, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601921

RESUMO

The difficulty to unambiguously identify the various subsets of mononuclear phagocytes (MNPs) of the intestinal lamina propria has hindered our understanding of the initial events occurring after mucosal exposure to HIV-1. Here, we compared the composition and function of MNP subsets at steady-state and following ex vivo and in vivo viral exposure in human and macaque colorectal tissues. Combined evaluation of CD11c, CD64, CD103, and CX3CR1 expression allowed to differentiate lamina propria MNPs subsets common to both species. Among them, CD11c+ CX3CR1+ cells expressing CCR5 migrated inside the epithelium following ex vivo and in vivo exposure of colonic tissue to HIV-1 or SIV. In addition, the predominant population of CX3CR1high macrophages present at steady-state partially shifted to CX3CR1low macrophages as early as three days following in vivo SIV rectal challenge of macaques. Our analysis identifies CX3CR1+ MNPs as novel players in the early events of HIV-1 and SIV colorectal transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...