Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(35): 24830-24834, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37608975

RESUMO

Controlled poration of lipid membranes is crucial for numerous biomimetic applications such as targeted drug delivery. Although several chemical and physical mechanisms have been proposed for the poration of synthetic membranes, achieving good temporal and spatial control remains a challenge. In this study, we introduce a novel method for membrane poration that utilizes the mechanical shockwave generated by the photo-acoustic effect, which occurs when an optically opaque microparticle is illuminated by a near-infrared laser of optical tweezers. We show that the shockwave effectively porates membranes of giant unilamellar vesicles in close proximity to the microparticle without damaging nearby cells, which is a desirable outcome for potential targeted drug delivery. The poration effect is nonspecific and operates on both liquid and gel phase membranes. Since the photo-acoustic effect can be triggered by standard optical tweezers, this method holds broad applicability in various experimental settings within the field of soft matter research.

2.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513914

RESUMO

Protein particles in biological drugs can significantly impact drug efficacy and carry the risk of adverse effects. Despite advancements, the understanding and control of particle formation in biopharmaceutical manufacturing remain incomplete. Therefore, further investigation into protein particles is warranted, especially considering that novel formats of biological drugs may be more susceptible to aggregation and particle formation than conventional monoclonal antibodies. In this study, we introduce a microfluidic approach for the real-time analysis of individual sub-visible protein particles during buffer exchange. We find that the modulation of intermolecular forces, achieved by changing the buffer pH or urea concentration, leads to the reversible swelling and shrinkage of particles by up to 50%, which is a consequence of altered intermolecular distances. Additionally, we identify a discrepancy in the biophysical behavior of protein particles compared to monomeric protein. This finding highlights the limited predictive power of commonly applied biophysical characterization methods for particle formation in early formulation development. Moreover, the observed particle swelling may be associated with manufacturing deviations, such as filter clogging. These results highlight the importance of studying individual particles to gain a comprehensive insight into particle behavior and the impact of formulation variations in the biopharmaceutical industry.

3.
HardwareX ; 12: e00367, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36238528

RESUMO

To visualize fast-moving objects in microfluidic applications, the image acquisition time must be on the order of a microsecond or less. Commercial imaging systems capable of such short exposure times may be too expensive for many research laboratories. We have therefore developed a low-cost stroboscopic illumination for transmitted-light microscopy based on a high-power LED that can be coupled to a standard industrial camera and provides exposure times on the order of 500 ns. The system is designed to be easily mounted on a standard condenser of an inverted microscope. The illumination is controlled by a fast Arduino-compatible Teensy® 4.0 development board, and the illumination parameters can be set from a PC via a graphical user interface written in Python. The system has been successfully used for high-throughput cell phenotyping using deformability cytometry on a Nikon TE2000 microscope, as well as for droplet microfluidic on an old Olympus inverted microscope.

4.
Sci Adv ; 8(10): eabj9406, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275729

RESUMO

Microbial plant pathogens secrete a range of effector proteins that damage host plants and consequently constrain global food production. Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) are produced by numerous phytopathogenic microbes that cause important crop diseases. Many NLPs are cytolytic, causing cell death and tissue necrosis by disrupting the plant plasma membrane. Here, we reveal the unique molecular mechanism underlying the membrane damage induced by the cytotoxic model NLP. This membrane disruption is a multistep process that includes electrostatic-driven, plant-specific lipid recognition, shallow membrane binding, protein aggregation, and transient pore formation. The NLP-induced damage is not caused by membrane reorganization or large-scale defects but by small membrane ruptures. This distinct mechanism of lipid membrane disruption is highly adapted to effectively damage plant cells.


Assuntos
Oomicetos , Lipídeos , Necrose , Oomicetos/metabolismo , Perforina/metabolismo , Plantas/metabolismo , Proteínas/metabolismo
5.
Front Cell Dev Biol ; 10: 934684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601539

RESUMO

Tunnelling nanotubes (TNTs) are membranous connections that represent a unique type of intercellular communication in different cell types. They are associated with cell physiology and cancer pathology. The possible existence of tunnelling nanotubes communication between urothelial cancer and normal cells has not yet been elucidated. Therefore, we analyzed TNTs formed by T24 cells (human invasive cancer urothelial cells) and normal porcine urothelial (NPU) cells, which serve as surrogate models for healthy human urothelial cells. Monocultures and cocultures of NPU and T24 cells were established and analyzed using live-cell imaging, optical tweezers, fluorescence microscopy, and scanning electron microscopy. TNTs of NPU cells differed significantly from tunnelling nanotubes of T24 cells in number, length, diameter, lipid composition, and elastic properties. Membrane domains enriched in cholesterol/sphingomyelin were present in tunnelling nanotubes of T24 cells but not in NPU cells. The tunnelling nanotubes in T24 cells were also easier to bend than the tunnelling nanotubes in NPU cells. The tunnelling nanotubes of both cell types were predominantly tricytoskeletal, and contained actin filaments, intermediate filaments, and microtubules, as well as the motor proteins myosin Va, dynein, and kinesin 5B. Mitochondria were transported within tunnelling nanotubes in living cells, and were colocalized with microtubules and the microtubule-associated protein dynamin 2. In cocultures, heterocellular tunnelling nanotubes were formed between NPU cells and T24 cells and vice versa. The presence of connexin 43 at the end of urothelial tunnelling nanotubes suggests a junctional connection and the involvement of tunnelling nanotube in signal transduction. In this study, we established a novel urothelial cancer-normal coculture model and showed cells in the minority tend to form tunnelling nanotubes with cells in the majority. The condition with cancer cells in the minority is an attractive model to mimic the situation after surgical resection with remaining cancer cells and may help to understand cancer progression and recurrence. Our results shed light on the biological activity of tunnelling nanotubes and have the potential to advance the search for anticancer drugs that target tunnelling nanotubes.

6.
Biology (Basel) ; 10(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34571750

RESUMO

Metastatic cancer cells can overcome detachment-induced cell death and can proliferate in anchorage-independent conditions. A recent study revealed that a co-treatment with two drugs that interfere with cell metabolism, metformin and 2-deoxy-D-glucose, promotes detachment of viable MDA-MB-231 breast cancer cells. In the present study, we analyzed if these detached viable MDA-MB-231 cells also exhibit other features related to cancer metastatic potential, i.e., if they are softer and more prone to adhere to epithelial cells. The cell mechanics of attached cells and floating cells were analyzed by optical tweezers and cell deformability cytometry, respectively. The adhesion was assessed on a confluent monolayer of HUVEC cells, with MDA-MB-231 cells either in static conditions or in a microfluidic flow. Additionally, to test if adhesion was affected by the state of the epithelial glycocalyx, HUVEC cells were treated with neuraminidase and tunicamycin. It was found that the treated MDA-MB-231 cells were more prone to adhere to HUVEC cells and that they were softer than the control, both in the floating state and after re-seeding to a substrate. The changes in the HUVEC glycocalyx, however, did not increase the adhesion potential of MDA-MB-231.

7.
Elife ; 102021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33856341

RESUMO

Numerous proteins target lipid droplets (LDs) through amphipathic helices (AHs). It is generally assumed that AHs insert bulky hydrophobic residues in packing defects at the LD surface. However, this model does not explain the targeting of perilipins, the most abundant and specific amphipathic proteins of LDs, which are weakly hydrophobic. A striking example is Plin4, whose gigantic and repetitive AH lacks bulky hydrophobic residues. Using a range of complementary approaches, we show that Plin4 forms a remarkably immobile and stable protein layer at the surface of cellular or in vitro generated oil droplets, and decreases LD size. Plin4 AH stability on LDs is exquisitely sensitive to the nature and distribution of its polar residues. These results suggest that Plin4 forms stable arrangements of adjacent AHs via polar/electrostatic interactions, reminiscent of the organization of apolipoproteins in lipoprotein particles, thus pointing to a general mechanism of AH stabilization via lateral interactions.


Assuntos
Gotículas Lipídicas/metabolismo , Perilipina-4/química , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Estrutura Secundária de Proteína
8.
Adv Physiol Educ ; 45(1): 5-9, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33428554

RESUMO

Electrocardiography (ECG) is one of the most widely used methods in clinical diagnosis. Here we describe an experimental approach that offers hands-on learning of its basic principles. An experimental model that consists of a rubber foil with a low electrical conductivity and a DC power unit is used to simulate the body and the electric dipole of the heart. It enables students to learn about the main features of the electric dipole and to visualize the induced electric potential in the body. The determination of the characteristic equipotential lines around the dipole and the measurement of simple electrocardiograms, comprising bipolar and unipolar leads, are made with a low-cost voltmeter. To make the exercise more relevant to clinical ECG, as well as making it more interesting, the students are additionally tasked to measure their own electrocardiogram with a simple, personal handheld ECG device.


Assuntos
Eletrocardiografia , Coração , Humanos , Aprendizagem
9.
PLoS One ; 15(12): e0231606, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382707

RESUMO

Keratin intermediate filaments are the principal structural element of epithelial cells. Their importance in providing bulk cellular stiffness is well recognized, but their role in the mechanics of cell cortex is less understood. In this study, we therefore compared the cortical stiffness of three keratinocyte lines: primary wild type cells (NHEK2), immortalized wild type cells (NEB1) and immortalized mutant cells (KEB7). The cortical stiffness was measured by lateral indentation of cells with AOD-steered optical tweezers without employing any moving mechanical elements. The method was validated on fixed cells and Cytochalasin-D treated cells to ensure that the observed variations in stiffness within a single cell line were not a consequence of low measurement precision. The measurements of the cortical stiffness showed that primary wild type cells were significantly stiffer than immortalized wild type cells, which was also detected in previous studies of bulk elasticity. In addition, a small difference between the mutant and the wild type cells was detected, showing that mutation of keratin impacts also the cell cortex. Thus, our results indicate that the role of keratins in cortical stiffness is not negligible and call for further investigation of the mechanical interactions between keratins and elements of the cell cortex.


Assuntos
Citoesqueleto de Actina/metabolismo , Filamentos Intermediários/metabolismo , Queratinócitos/metabolismo , Queratinas/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/ultraestrutura , Linhagem Celular , Citocalasina D/farmacologia , Elasticidade/efeitos dos fármacos , Expressão Gênica , Dureza/efeitos dos fármacos , Humanos , Filamentos Intermediários/ultraestrutura , Queratinócitos/efeitos dos fármacos , Queratinócitos/ultraestrutura , Queratinas/genética , Microtúbulos/ultraestrutura , Pinças Ópticas , Especificidade de Órgãos
10.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066582

RESUMO

In biology, the modern scientific fashion is to mostly study proteins. Much less attention is paid to lipids. However, lipids themselves are extremely important for the formation and functioning of cellular membrane organelles. Here, the role of the geometry of the lipid bilayer in regulation of organelle shape is analyzed. It is proposed that during rapid shape transition, the number of lipid heads and their size (i.e., due to the change in lipid head charge) inside lipid leaflets modulates the geometrical properties of organelles, in particular their membrane curvature. Insertion of proteins into a lipid bilayer and the shape of protein trans-membrane domains also affect the trans-membrane asymmetry between surface areas of luminal and cytosol leaflets of the membrane. In the cases where lipid molecules with a specific shape are not predominant, the shape of lipids (cylindrical, conical, or wedge-like) is less important for the regulation of membrane curvature, due to the flexibility of their acyl chains and their high ability to diffuse.


Assuntos
Membrana Celular/química , Forma Celular , Forma das Organelas , Animais , Divisão Celular , Membrana Celular/ultraestrutura , Vesículas Citoplasmáticas/química , Complexo de Golgi/química , Humanos , Biogênese de Organelas , Pseudópodes/química
11.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283594

RESUMO

Keratins are one of the most abundant proteins in epithelial cells. They form a cytoskeletal filament network whose structural organization seriously conditions its function. Dynamic keratin particles and aggregates are often observed at the periphery of mutant keratinocytes related to the hereditary skin disorder epidermolysis bullosa simplex, which is due to mutations in keratins 5 and 14. To account for their emergence in mutant cells, we extended an existing mathematical model of keratin turnover in wild-type cells and developed a novel 2D phase-field model to predict the keratin distribution inside the cell. This model includes the turnover between soluble, particulate and filamentous keratin forms. We assumed that the mutation causes a slowdown in the assembly of an intermediate keratin phase into filaments, and demonstrated that this change is enough to account for the loss of keratin filaments in the cell's interior and the emergence of keratin particles at its periphery. The developed mathematical model is also particularly tailored to model the spatial distribution of keratins as the cell changes its shape.


Assuntos
Expressão Gênica , Queratinas/genética , Queratinas/metabolismo , Modelos Biológicos , Mutação , Algoritmos , Alelos , Substituição de Aminoácidos , Linhagem Celular , Células Cultivadas , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/metabolismo , Epidermólise Bolhosa Simples/patologia , Genes Reporter , Humanos , Transporte Proteico , Solubilidade
12.
N Biotechnol ; 47: 60-66, 2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-29501588

RESUMO

Microcavities provide a well-controlled flow-free microenvironment and play an important role in many microfluidic systems, for example as cell-culturing microchambers. Here we show that transient concentration gradients that emerge during diffusive exchange of solutes in microcavities induce passive migration (diffusiophoresis) of blood cells and synthetic phospholipid vesicles. The passive migration is observed in various concentration gradients comprising non-electrolytes and electrolytes, i.e., glucose, sucrose, sodium chloride, potassium chloride, potassium benzoate, and potassium sulfate. The results add to prior reports, where gradients of non-electrolytes and monovalent salts, produced by micropipette injection, did not induce a noticeable migration of vesicles. The migration distances measured depended on the solution and the cell or vesicle type, and were in the range of several tens of micrometers. The results show that diffusiophoresis of cells and vesicles is a notable phenomenon in a flow-free environment and has to be taken into account when an accurate spatiotemporal control of cells or vesicles in microcavities is required.


Assuntos
Células Sanguíneas/citologia , Movimento Celular , Fosfolipídeos/metabolismo , Difusão , Eritrócitos/metabolismo , Humanos , Lipossomas Unilamelares/química
13.
BMC Biophys ; 11: 1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29308185

RESUMO

BACKGROUND: Cell based carriers are increasingly recognized as a good system for cargo delivery to cells. One of the reasons is their biocompatibility and low toxicity compared to artificial systems. Giant plasma membrane vesicles (GPMV) derive from the cell plasma membrane. Thus they offer the closest approximation to it, which makes them good candidates for potential drug delivery systems. To evaluate the applicability of GPMVs as carriers, we analyzed their basic biophysical properties to test their robustness in the face of changeable physiological conditions, as well as their ability to translocate across the membrane into cells. RESULTS: GPMVs formed from human umbilical vein endothelial cells (HUVEC) sustain a drastic osmotic challenge (50-500 mOsmoL/kg) unlike giant unilamelar vesicles (GUVs). In hyper-osmotic solutions the average volume decreases and membrane invaginations form, while in the hypo-osmolar buffer the volume of GPMVs increases and these changes were not reversible. The membranes of flaccid GPMVs started to wrinkle unevenly giving rise to buds after exposure to lipopolysaccharide (LPS). The shape changes in GUVs are reversible in contrast to GPMVs after LPS removal. GPMVs exposed to fluorescent LPS exhibited a signal that remained visible in some GPMVs even after LPS removal, which was never the case with GUVs. Calcein penetrated both into GUVs and GPMVs, however after the removal from the bulk solution some of the GPMVs still exhibited very bright signal, while in GUVs only a weak fluorescent signal was detected. We could also see that practically all GPMVs incorporated dextran initially, but after the dextran solution was changed with the initial non-fluorescent solution it remained only in 20% of them. The majority of HUVEC cells displayed a fluorescent signal after the incubation with GPMVs that contained fluorescently labeled dextran. CONCLUSION: Our findings indicate that GPMVs behave quite differently from artificially made giant phospholipid vesicles and the changes induced by the different treatments we subjected them to are not reversible. We also demonstrate that different substances can be both loaded into them and delivered into cells, so GPMVs may be of potential use as cargo/therapy delivery systems.

14.
Bioessays ; 39(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29052840

RESUMO

Fission of cellular membranes is ubiquitous and essential for life. Complex protein machineries, such as the dynamin and ESCRT spirals, have evolved to mediate membrane fission during diverse cellular processes, for example, vesicle budding. A new study suggests that non-specialized membrane-bound proteins can induce membrane fission through mass action due to protein crowding. Because up to 2/3 of the mass of cellular membranes is contributed by proteins, membrane protein crowding is an important physiological parameter. Considering the complexity of membrane shape transitions during a fission reaction, spatial and temporal variability in protein distribution, and the abundance of intrinsically disordered regions in proteins on an invaginating membrane, protein crowding can have diverse consequences for fission in the cell. The question is, how and to what extent this mechanism combines with the action of dedicated fission machineries.


Assuntos
Membrana Celular/metabolismo , Dinaminas/química , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Vesículas Extracelulares/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Animais , Membrana Celular/ultraestrutura , Dinaminas/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vesículas Extracelulares/ultraestrutura , Expressão Gênica , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Simulação de Dinâmica Molecular , Termodinâmica
15.
Biochim Biophys Acta ; 1858(6): 1152-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26969088

RESUMO

Crowding of asymmetrically-distributed membrane proteins has been recently recognized as an important factor in remodeling of biological membranes, for example during transport vesicle formation. In this paper, we theoretically analyze the effect of protein crowding on membrane bending and examine its dependence on protein size, shape, transmembrane asymmetry and lateral confinement. We consider three scenarios of protein lateral organization, which are highly relevant for cellular membranes in general: freely diffusing membrane proteins without lateral confinement, the presence of a diffusion barrier and interactions with a vesicular coat. We show that protein crowding affects vesicle formation even if the proteins are distributed symmetrically across the membrane and that this effect depends significantly on lateral confinement. The largest crowding effect is predicted for the proteins that are confined to the forming vesicle by a diffusion barrier. We calculate the bending properties of a crowded membrane and find that its spontaneous curvature depends primarily on the degree of transmembrane asymmetry, and its effective bending modulus on the type of lateral confinement. Using the example of COPII vesicle formation from the endoplasmic reticulum, we analyze the energetic cost of vesicle formation. The results provide a novel insight into the effects of lateral and transmembrane organization of membrane proteins, and can guide data interpretation and future experimental approaches.


Assuntos
Proteínas de Membrana/química , Membrana Celular/química , Modelos Biológicos
16.
Int J Mol Sci ; 16(3): 5299-333, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25761238

RESUMO

Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle. Thus, the shape of the organelle could be critically dependent on TAA. Here, using mathematical modeling and stereological measurements of TAA during fast transformation of organelle shapes, we present evidence that suggests that when organelle volume and surface area are constant, TAA can regulate transformation of the shape of the Golgi apparatus, endosomal multivesicular bodies, and microvilli of brush borders of kidney epithelial cells. Extraction of membrane curvature by small spheres, such as COPI-dependent vesicles within the Golgi (extraction of positive curvature), or by intraluminal vesicles within endosomes (extraction of negative curvature) controls the shape of these organelles. For instance, Golgi tubulation is critically dependent on the fusion of COPI vesicles with Golgi cisternae, and vice versa, for the extraction of membrane curvature into 50-60 nm vesicles, to induce transformation of Golgi tubules into cisternae. Also, formation of intraluminal ultra-small vesicles after fusion of endosomes allows equilibration of their TAA, volume and surface area. Finally, when microvilli of the brush border are broken into vesicles and microvilli fragments, TAA of these membranes remains the same as TAA of the microvilli. Thus, TAA has a significant role in transformation of organelle shape when other factors remain constant.


Assuntos
Membranas Intracelulares/química , Fusão de Membrana , Modelos Biológicos , Animais , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Transporte Proteico , Ratos , Ratos Wistar
17.
Cell Biochem Biophys ; 71(3): 1605-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25395197

RESUMO

Cellular structural integrity is provided primarily by the cytoskeleton, which comprises microtubules, actin filaments, and intermediate filaments. The plasma membrane has been also recognized as a mediator of physical forces, yet its contribution to the structural integrity of the cell as a whole is less clear. In order to investigate the relationship between the plasma membrane and the cytoskeleton, we selectively disrupted the plasma membrane and each of the cytoskeletal elements in Chinese hamster ovary cells and assessed subsequent changes in cellular structural integrity. Confocal microscopy was used to visualize cytoskeletal rearrangements, and optical tweezers were utilized to quantify membrane tether extraction. We found that cholesterol depletion from the plasma membrane resulted in rearrangements of all cytoskeletal elements. Conversely, the state of the plasma membrane, as assessed by tether extraction, was affected by disruption of any of the cytoskeletal elements, including microtubules and intermediate filaments, which are located mainly in the cell interior. The results demonstrate that, besides the cytoskeleton, the plasma membrane is an important contributor to cellular integrity, possibly by acting as an essential framework for cytoskeletal anchoring. In agreement with the tensegrity model of cell mechanics, our results support the notion of the cell as a prestressed structure.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Células CHO , Membrana Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Colesterol/metabolismo , Cricetinae , Cricetulus , Citoesqueleto/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Nocodazol/farmacologia
18.
Trends Biochem Sci ; 38(11): 576-84, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24054463

RESUMO

Many cellular processes require membrane deformation, which is driven by specialized protein machinery and can often be recapitulated using pure lipid bilayers. However, biological membranes contain a large amount of embedded proteins. Recent research suggests that membrane-bound proteins with asymmetric distribution of mass across the bilayer can influence membrane bending in a nonspecific manner due to molecular crowding. This mechanism is physical in nature and arises from collisions between such 'mushroom-shaped' proteins. It can either facilitate or impede the action of protein coats, for example COPII, during vesicle budding. We describe the physics of how molecular crowding can influence membrane bending and discuss the implications for other cellular processes, such as sorting of glycosylphosphatidylinositol-anchored proteins (GPI-APs) and production of intraluminal vesicles.


Assuntos
Membrana Celular/fisiologia , Proteínas de Membrana/fisiologia , Bicamadas Lipídicas
19.
PLoS One ; 6(11): e26824, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22132079

RESUMO

A prominent feature of many intracellular compartments is a large membrane surface area relative to their luminal volume, i.e., the small relative volume. In this study we present a theoretical analysis of discoid membrane compartments with a small relative volume and then compare the theoretical results to quantitative morphological assessment of fusiform vesicles in urinary bladder umbrella cells. Specifically, we employ three established extensions of the standard approach to lipid membrane shape calculation and determine the shapes that could be expected according to three scenarios of membrane shaping: membrane adhesion in the central discoid part, curvature driven lateral segregation of membrane constituents, and existence of stiffer membrane regions, e.g., support by protein scaffolds. The main characteristics of each scenario are analyzed. The results indicate that even though all three scenarios can lead to similar shapes, there are values of model parameters that yield qualitatively distinctive shapes. Consequently, a distinctive shape of an intracellular compartment may reveal its membrane shaping mechanism and the membrane structure. The observed shapes of fusiform vesicles fall into two qualitatively different classes, yet they are all consistent with the theoretical results and the current understanding of their structure and function.


Assuntos
Compartimento Celular , Tamanho Celular , Espaço Intracelular/metabolismo , Forma das Organelas , Adesividade , Animais , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares , Camundongos , Camundongos Endogâmicos ICR
20.
Lab Chip ; 11(24): 4200-6, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22033516

RESUMO

The reversible environmental changes around flaccid lipid vesicles represent a considerable experimental challenge, particularly because of remarkable softness of flaccid membranes, which can warp irreversibly under the slightest hydrodynamic flow. As a result, we have developed a microfluidic device for the controlled analysis of individual flaccid, giant lipid vesicles in a changing chemical environment. The setup combines the advantages of a flow-free microfluidic diffusion chamber and optical tweezers, which are used to load the sample vesicles into the chamber. After a vesicle is loaded into the diffusion chamber, its chemical environment is controllably and reversibly changed solely by means of diffusion. The chamber is designed as a 250 micrometres-long and 100 micrometres-wide dead-end microchannel, which extends from a T-junction of the main microchannels. Measurements of the flow-velocity profile in the chamber show that the flow rate decreases exponentially and scales linearly with the flow rate in the main channel. The characteristic length of the exponential decrease is 15 (1 ± 0.13) micrometres, meaning that a large part of the diffusion chamber is effectively flow-free. The diffusion properties are assessed by monitoring the diffusion of a dye into the chamber. It was found that a simple 1D diffusion model fits well to the experimental data. The time needed for the exchange of solutes in the chamber is of the order of minutes, depending on the solute's molecular weight. Here, we demonstrate how the diffusion chamber can be used for reversible environmental changes around flaccid, giant lipid vesicles and membrane tethers (nanotubes).


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Lipossomas Unilamelares/química , Difusão , Desenho de Equipamento , Cinética , Técnicas Analíticas Microfluídicas/instrumentação , Pinças Ópticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...