Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 19(2)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38364281

RESUMO

Development of wound dressings with enhanced therapeutic properties is of great interest in the modern healthcare. In this study, a zein-based nanofibrous wound dressing containing curcumin as a therapeutic agent was fabricated through electrospinning technique. In order to achieve desirable properties, such as antibacterial characteristics, reduced contact angle, and enhanced mechanical properties, the layer-by-layer technique was used for coating the surfaces of drug-loaded nanofibers by sequentially incorporating poly (sodium 4-styrene sulfonate) as a polyanion and poly (diallyldimethylammonium chloride) (PDADMAC) as a polycation. Various analyses, including scanning electron microscopy, Fourier transform infrared spectroscopy, drug release assessment., and mechanical tests were employed to assess the characteristics of the prepared wound dressings. Based on the results, coating with polyelectrolytes enhanced the Young's modulus and tensile strength of the electrospun mat from 1.34 MPa and 4.21 MPa to 1.88 MPa and 8.83 MPa, respectively. The coating also improved the controlled release of curcumin and antioxidant activity, while the outer layer, PDADMAC, exhibited antibacterial properties. The cell viability tests proved the appropriate biocompatibility of the prepared wound dressings. Moreover, our findings show that incorporation of the coating layers enhances cell migration and provides a favorable surface for cell attachment. According to the findings of this study, the fabricated nanofibrous wound dressing can be considered a promising and effective therapeutic intervention for wound management, facilitating the healing process.


Assuntos
Curcumina , Nanofibras , Polietilenos , Compostos de Amônio Quaternário , Zeína , Nanofibras/química , Zeína/química , Bandagens/microbiologia , Antibacterianos/química
2.
Artif Organs ; 47(8): 1267-1284, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36869662

RESUMO

BACKGROUND: Enhancing the efficiency of cell-based skin tissue engineering (TE) approaches is possible via designing electrospun scaffolds possessing natural materials like amniotic membrane (AM) with wound healing characteristics. Concentrating on this aim, we fabricated innovative polycaprolactone (PCL)/AM scaffolds through the electrospinning process. METHODS: The manufactured structures were characterized by employing scanning electron microscope (SEM), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, tensile testing, Bradford protein assay, etc. In addition, the mechanical properties of scaffolds were simulated by the multiscale modeling method. RESULTS: As a result of conducting various tests, it was concluded that the uniformity and distribution of fibers decreased with an increase in the amniotic content. Furthermore, PCL-AM scaffolds contained amniotic and PCL characteristic bands. In the case of protein release, greater content of AM led to the release of higher amounts of collagen. Tensile testing revealed that scaffolds' ultimate strength increased when the AM content augmented. The multiscale modeling demonstrated that the scaffold had elastoplastic behavior. In order to assess cellular attachment, viability, and differentiation, human adipose-derived stem cells (ASCs) were seeded on the scaffolds. In this regard, SEM and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays showed significant cellular proliferation and viability on the proposed scaffolds, and these analyses illustrated that higher cell survival and adhesion could be achieved when scaffolds possessed a larger amount of AM. After 21 days of cultivation, particular keratinocyte markers, such as keratin I and involucrin, were identified through utilizing immunofluorescence and real-time polymerase chain reaction (PCR) tests. The markers' expressions were higher in the PCL-AM scaffold with a ratio of 90:10 v v-1 compared with the PCL-epidermal growth factor (EGF) structure. Moreover, the presence of AM in the scaffolds resulted in the keratinogenic differentiation of ASCs even without employing EGF. Consequently, this state-of-the-art experiment suggests that the PCL-AM scaffold can be a promising candidate in skin bioengineering. CONCLUSION: This study showed that mixing AM with PCL, a widely used polymer, in different concentrations can overcome PCL disadvantages such as high hydrophobicity and low cellular compatibility.


Assuntos
Nanofibras , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Fator de Crescimento Epidérmico , Nanofibras/química , Âmnio , Cicatrização , Engenharia Tecidual/métodos , Poliésteres/química , Proliferação de Células
3.
Tissue Cell ; 81: 101996, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36657256

RESUMO

In the development of vascular tissue engineering, particularly in the case of small diameter vessels, one of the key obstacles is the blockage of these veins once they enter the in vivo environment. One of the contributing factors to this problem is the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) from the media layer of the artery to the interior of the channel. Two distinct phenotypes have been identified for smooth muscle cells, namely synthetic and contractile. Since the synthetic phenotype plays an essential role in the unusual growth and migration, the aim of this study was to convert the synthetic phenotype into the contractile one, which is a solution to prevent the abnormal growth of VSMCs. To achieve this goal, these cells were subjected to electrical signals, using a 1000 µA sinusoidal stimulation at 10 Hz for four days, with 20 min duration per 24 h. The morphological transformations and changes in the expression of vimentin, nestin, and ß-actin proteins were then studied using ICC and flow cytometry assays. Also, the expression of VSMC specific markers such as smooth muscle myosin heavy chain (SMMHC) and smooth muscle alpha-actin (α-SMA) were evaluated using RT-PCR test. In the final phase of this study, the sheep decellularized vessel was employed as a scaffold for seeding these cells. Based on the results, electrical stimulation resulted in some morphological alterations in VSMCs. Furthermore, the observed reductions in the expression levels of vimentin, nestin and ß-actin proteins and increase in the expression of SMMHC and α-SMA markers showed that it is possible to convert the synthetic phenotype to the contractile one using the studied regime of electrical stimulation. Finally, it can be concluded that electrical stimulation can significantly affect the phenotype of VSMCs, as demonstrated in this study.


Assuntos
Actinas , Músculo Liso Vascular , Animais , Ovinos , Músculo Liso Vascular/metabolismo , Actinas/metabolismo , Nestina , Vimentina/metabolismo , Diferenciação Celular/fisiologia , Fenótipo , Estimulação Elétrica , Células Cultivadas , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...