Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 628(Pt B): 745-757, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027784

RESUMO

The influence of different alkali and alkaline earth cations (Na+, K+, Ca2+, and Mg2+), and of solution pH, on surface interactions of metakaolin particles with a sodium naphthalene sulfonate formaldehyde polymer (SNSFP) (a commercial superplasticizer for concretes) was investigated in aqueous systems relevant to alkali-activated and blended Portland cements. This study used zeta potential measurements, adsorption experiments, and both in situ and ex situ Fourier transform infrared spectroscopy measurements of the suspensions to gain a fundamental understanding of colloidal interactions and physicochemical mechanisms governing dispersion in this system. SNSFP was most effective in dispersing metakaolin suspensions in Ca2+-modified aqueous NaOH systems (CaCl2-NaOH) at dosages of  5 wt.%. Additionally, Ca2+ was the most effective alkaline earth cation mediator in providing a dispersion effect in metakaolin dispersed in aqueous NaOH and SNSFP mixtures, while Mg2+ was the most effective in aqueous KOH and SNSFP mixtures. The colloidal dispersion remained stable in the highly alkaline environment, and therefore SNSFP could be utilized to improve dispersion of metakaolin-based alkali-activated systems. The suggested mechanism for colloidal stability and fluidity of metakaolin-based cements (e.g. Portland cement blends and alkali-activated cements) is explained by changes in the distribution and structure of the electric double-layer, as well as structural forces, due to alteration in surface charge density and hydrated shell, facilitating competitive adsorption of the polymer.

2.
J Colloid Interface Sci ; 472: 237-46, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27054773

RESUMO

Fundamental understanding of the wettability of carbonate formations can potentially be applied to the development of oil recovery strategies in a complex carbonate reservoir. In the present study, surface energies of representative carbonate samples were evaluated by direct quantitative force measurements, using scanning force microscopy (SFM) at sub-micron scale, to develop a reliable method to predict reservoir wettability. Local adhesion force measurements were conducted on appropriate calcite and dolomite samples and performed in air as well as in the presence of polar and nonpolar fluids. This study demonstrated that, by comparing measurements of adhesion forces between samples of the same mineral in different fluids, it is feasible to determine the surface energy of a given mineral as well as its polar and nonpolar components. The derived values are in agreement with literature. A proof-of-principle protocol has been established to quantify surface energy using SFM-based adhesion measurements. This novel methodology complements the conventional contact angle measurement technique, where surface energy can only be examined at large length scale. The reported methodology has great potential for further optimization into a new standard method for fast and accurate surface energy determination, and hence provides a new tool for reservoir rock wettability characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...