Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(5): e0056224, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564667

RESUMO

Spores of Bacillus subtilis germinate in response to specific germinant molecules that are recognized by receptors in the spore envelope. Germinants signal to the dormant spore that the environment can support vegetative growth, so many germinants, such as alanine and valine, are also essential metabolites. As such, they are also required to build the spore. Here we show that these germinants cause premature germination if they are still present at the latter stages of spore formation and beyond, but that B. subtilis metabolism is configured to prevent this: alanine and valine are catabolized and cleared from wild-type cultures even when alternative carbon and nitrogen sources are present. Alanine and valine accumulate in the spent media of mutants that are unable to catabolize these amino acids, and premature germination is pervasive. Premature germination does not occur if the germinant receptor that responds to alanine and valine is eliminated, or if wild-type strains that are able to catabolize and clear alanine and valine are also present in coculture. Our findings demonstrate that spore-forming bacteria must fine-tune the concentration of any metabolite that can also function as a germinant to a level that is high enough to allow for spore development to proceed, but not so high as to promote premature germination. These results indicate that germinant selection and metabolism are tightly linked, and suggest that germinant receptors evolve in tandem with the catabolic priorities of the spore-forming bacterium. IMPORTANCE: Many bacterial species produce dormant cells called endospores, which are not killed by antibiotics or common disinfection practices. Endospores pose critical challenges in the food industry, where endospore contaminations cause food spoilage, and in hospitals, where infections by pathogenic endospore formers threaten the life of millions every year. Endospores lose their resistance properties and can be killed easily when they germinate and exit dormancy. We have discovered that the enzymes that break down the amino acids alanine and valine are critical for the production of stable endospores. If these enzymes are absent, endospores germinate as they are formed or shortly thereafter in response to alanine, which can initiate the germination of many different species' endospores, or to valine. By blocking the activity of alanine dehydrogenase, the enzyme that breaks down alanine and is not present in mammals, it may be possible to inactivate endospores by triggering premature and unproductive germination.


Assuntos
Alanina , Aminoácidos , Bacillus subtilis , Esporos Bacterianos , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Esporos Bacterianos/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/genética , Alanina/metabolismo , Aminoácidos/metabolismo , Valina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Meios de Cultura/química
2.
PLoS One ; 17(1): e0262354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061755

RESUMO

The threat to public health posed by drug-resistant bacteria is rapidly increasing, as some of healthcare's most potent antibiotics are becoming obsolete. Approximately two-thirds of the world's antibiotics are derived from natural products produced by Streptomyces encoded biosynthetic gene clusters. Thus, to identify novel gene clusters, we sequenced the genomes of four bioactive Streptomyces strains isolated from the soil in San Diego County and used Bacterial Cytological Profiling adapted for agar plate culturing in order to examine the mechanisms of bacterial inhibition exhibited by these strains. In the four strains, we identified 104 biosynthetic gene clusters. Some of these clusters were predicted to produce previously studied antibiotics; however, the known mechanisms of these molecules could not fully account for the antibacterial activity exhibited by the strains, suggesting that novel clusters might encode antibiotics. When assessed for their ability to inhibit the growth of clinically isolated pathogens, three Streptomyces strains demonstrated activity against methicillin-resistant Staphylococcus aureus. Additionally, due to the utility of bacteriophages for genetically manipulating bacterial strains via transduction, we also isolated four new phages (BartholomewSD, IceWarrior, Shawty, and TrvxScott) against S. platensis. A genomic analysis of our phages revealed nearly 200 uncharacterized proteins, including a new site-specific serine integrase that could prove to be a useful genetic tool. Sequence analysis of the Streptomyces strains identified CRISPR-Cas systems and specific spacer sequences that allowed us to predict phage host ranges. Ultimately, this study identified Streptomyces strains with the potential to produce novel chemical matter as well as integrase-encoding phages that could potentially be used to manipulate these strains.


Assuntos
Bacteriófagos/isolamento & purificação , Streptomyces/metabolismo , Streptomyces/virologia , Antibacterianos/farmacologia , Bacteriófagos/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Família Multigênica/genética , Filogenia , RNA Ribossômico 16S/genética
3.
J Bacteriol ; 203(19): e0010521, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34280002

RESUMO

In this study, we sought to determine whether an in vivo assay for studying antibiotic mechanisms of action could provide insight into the activity of compounds that may inhibit multiple targets. Thus, we conducted an activity screen of 31 structural analogs of rhodanine-containing pan-assay interference compounds (PAINS). We identified nine active molecules against Escherichia coli and classified them according to their in vivo mechanisms of action. The mechanisms of action of PAINS are generally difficult to identify due to their promiscuity. However, we leveraged bacterial cytological profiling, a fluorescence microscopy technique, to study these complex mechanisms. Ultimately, we found that although some of our molecules promiscuously inhibit multiple cellular pathways, a few molecules specifically inhibit DNA replication despite structural similarity to related PAINS. A genetic analysis of resistant mutants revealed thymidylate kinase (essential for DNA synthesis) as an intracellular target of some of these rhodanine-containing antibiotics. This finding was supported by in vitro activity assays, as well as experiments utilizing a thymidylate kinase overexpression system. The analog that demonstrated the half-maximal inhibitory concentration in vitro and MIC in vivo displayed the greatest specificity for inhibition of the DNA replication pathway, despite containing a rhodamine moiety. Although it is thought that PAINS cannot be developed as antibiotics, this work showcases novel inhibitors of E. coli thymidylate kinase. Moreover, perhaps more importantly, this work highlights the utility of bacterial cytological profiling for studying the in vivo specificity of antibiotics and demonstrates that bacterial cytological profiling can identify multiple pathways that are inhibited by an individual molecule. IMPORTANCE We demonstrate that bacterial cytological profiling is a powerful tool for directing antibiotic discovery efforts because it can be used to determine the specificity of an antibiotic's in vivo mechanism of action. By assaying analogs of PAINS, molecules that are notoriously intractable and nonspecific, we (surprisingly) identify molecules with specific activity against E. coli thymidylate kinase. This suggests that structural modifications to PAINS can confer stronger inhibition by targeting a specific cellular pathway. While in vitro inhibition assays are susceptible to false-positive results (especially from PAINS), bacterial cytological profiling provides the resolution to identify molecules with specific in vivo activity.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Rodanina/metabolismo , Antibacterianos/química , DNA Bacteriano/genética , Descoberta de Drogas , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Núcleosídeo-Fosfato Quinase/genética , Conformação Proteica
4.
Microb Cell ; 8(1): 1-16, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33490228

RESUMO

Endospore formation has been a rich field of research for more than a century, and has benefited from the powerful genetic tools available in Bacillus subtilis. In this review, we highlight foundational discoveries that shaped the sporulation field, from its origins to the present day, tracing a chronology that spans more than one hundred eighty years. We detail how cell-specific gene expression has been harnessed to investigate the existence and function of intercellular proteinaceous channels in sporulating cells, and we illustrate the rapid progress in our understanding of the cell biology of sporulation in recent years using the process of chromosome translocation as a storyline. Finally, we sketch general aspects of sporulation that remain largely unexplored, and that we envision will be fruitful areas of future research.

5.
Appl Environ Microbiol ; 79(18): 5527-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23835175

RESUMO

Soil-transmitted helminths (hookworms, whipworms, and large roundworms) are agents of intestinal roundworm diseases of poverty that infect upwards of 2 billion people worldwide. A great challenge in treating these diseases is the development of anthelmintic therapeutics that are inexpensive, can be produced in great quantity, and are capable of delivery under varied and adverse environmental conditions. A potential solution to this challenge is the use of live bacteria that are acceptable for human consumption, e.g., Bacillus subtilis, and that can be engineered with therapeutic properties. In this study, we expressed the Bacillus thuringiensis anthelmintic protein Cry5B in a bacterial strain that has been used as a model for live bacterial therapy, Bacillus subtilis PY79. PY79 transformed with a Cry5B expression plasmid (PY79-Cry5B) is able to express Cry5B from the endogenous B. thuringiensis cry5B promoter. During sporulation of PY79-Cry5B, Cry5B is packaged as a crystal. Furthermore, Cry5B produced in PY79 is bioactive, with a 50% lethal concentration (LC50) of 4.3 µg/ml against the roundworm Caenorhabditis elegans. PY79-Cry5B was a significantly effective therapeutic in experimental Ancylostoma ceylanicum hookworm infections of hamsters. A single 10-mg/kg (0.071 µmol/kg of body weight) dose of Cry5B administered as a Cry5B-PY79 spore crystal lysate achieved a 93% reduction in hookworm burdens, which is superior on a molar level to reductions seen with clinically used anthelmintics. Given that a bacterial strain such as this one can be produced cheaply in massive quantities, our results demonstrate that the engineering and delivery of live bacterial strains have great potential to treat a significant contributor to poverty worldwide, namely, hookworm disease and other soil-transmitted helminthiasis.


Assuntos
Antibiose , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Terapia Biológica/métodos , Endotoxinas/metabolismo , Helmintíase/terapia , Proteínas Hemolisinas/metabolismo , Enteropatias/terapia , Animais , Bacillus subtilis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Cricetinae , Modelos Animais de Doenças , Endotoxinas/genética , Proteínas Hemolisinas/genética , Enteropatias Parasitárias , Resultado do Tratamento
6.
J Bacteriol ; 194(10): 2715-24, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22427628

RESUMO

Alp7A is a bacterial actin from Bacillus subtilis plasmid pLS20 that functions in plasmid segregation. Alp7A's function requires that it assemble into filaments that treadmill and exhibit dynamic instability. These dynamic properties require the two other components of the alp7A operon, the downstream alp7R gene and the upstream alp7C sequence, as does the ability of Alp7A to form filaments at its physiological concentration in the cell. Here, we show that these two other components of the operon also determine the amount of Alp7A that is produced in the cell. The deletion of alp7R leads to overproduction of Alp7A, which assembles into large, amorphous, static filaments that disrupt chromosome segregation and cell division. The product of the alp7R gene is a DNA-binding protein that represses transcription of the alp7A operon. Purified Alp7R protein binds specifically to alp7C, which contains two σ(A) promoters embedded within a series of near-repeats of a 10-mer. Alp7R also shows the typical nonspecific binding activity of a DNA-binding protein: Alp7R-GFP (green fluorescent protein) associates with the chromosomes of cells that lack alp7C. When Alp7A-GFP is produced in B. subtilis along with untagged Alp7R, Alp7A-GFP also colocalizes with the chromosome, indicating that Alp7R associates with Alp7A. Hence Alp7R, determines both the activity and the cellular concentration of Alp7A, and it can associate with Alp7A even if it is not bound to alp7C.


Assuntos
Actinas/metabolismo , Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Actinas/genética , Bacillus subtilis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Deleção de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica/fisiologia
7.
Mol Microbiol ; 73(4): 534-52, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19602153

RESUMO

Actin, one of the most abundant proteins in the eukaryotic cell, also has an abundance of relatives in the eukaryotic proteome. To date though, only five families of actins have been characterized in bacteria. We have conducted a phylogenetic search and uncovered more than 35 highly divergent families of actin-like proteins (Alps) in bacteria. Their genes are found primarily on phage genomes, on plasmids and on integrating conjugative elements, and are likely to be involved in a variety of functions. We characterize three Alps and find that all form filaments in the cell. The filaments of Alp7A, a plasmid partitioning protein and one of the most divergent of the Alps, display dynamic instability and also treadmill. Alp7A requires other elements from the plasmid to assemble into dynamic polymers in the cell. Our findings suggest that most if not all of the Alps are indeed actin relatives, and that actin is very well represented in bacteria.


Assuntos
Actinas/metabolismo , Bactérias/genética , Proteínas de Bactérias/metabolismo , Filogenia , Actinas/genética , Sequência de Aminoácidos , Bactérias/metabolismo , Proteínas de Bactérias/genética , Biologia Computacional , Dados de Sequência Molecular , Família Multigênica , Óperon , Plasmídeos/genética , Alinhamento de Sequência
8.
Mol Microbiol ; 67(5): 935-46, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18208495

RESUMO

The highly conserved ParA family of partitioning systems is responsible for positioning DNA and protein complexes in bacteria. In Escherichia coli, plasmids that rely upon these systems are positioned at mid-cell and are repositioned at the quarter-cell positions after replication. How they remain fixed at these positions throughout the cell cycle is unknown. We use fluorescence recovery after photobleaching and time-lapse microscopy to measure plasmid mobility in living E. coli cells. We find that a minimalized version of plasmid RK2 that lacks its Par system is highly mobile, that the intact RK2 plasmid is relatively immobile, and that the addition of a Par system to the minimalized RK2 plasmid limits its mobility to that of the intact RK2. Mobility is thus the default state, and Par systems are required not only to position plasmids, but also to hold them at these positions. The intervention of Par systems is required continuously throughout the cell cycle to restrict plasmid movement that would, if unrestricted, subvert the segregation process. Our results reveal an important function for Par systems in plasmid DNA segregation that is likely to be conserved in bacteria.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Espaço Intracelular/metabolismo , Plasmídeos , Proteínas de Bactérias/metabolismo , Replicação do DNA , Eletroporação , Escherichia coli/citologia , Proteínas de Escherichia coli/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
9.
EMBO J ; 25(24): 5919-31, 2006 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-17139259

RESUMO

We here identify a protein (AlfA; actin like filament) that defines a new family of actins that are only distantly related to MreB and ParM. AlfA is required for segregation of Bacillus subtilis plasmid pBET131 (a mini pLS32-derivative) during growth and sporulation. A 3-kb DNA fragment encoding alfA and a downstream gene (alfB) is necessary and sufficient for plasmid stability. AlfA-GFP assembles dynamic cytoskeletal filaments that rapidly turn over (t(1/2)< approximately 45 s) in fluorescence recovery after photobleaching experiments. A point mutation (alfA D168A) that completely inhibits AlfA subunit exchange in vivo is strongly defective for plasmid segregation, demonstrating that dynamic polymerization of AlfA is necessary for function. During sporulation, plasmid segregation occurs before septation and independently of the DNA translocase SpoIIIE and the chromosomal Par proteins Soj and Spo0J. The absence of the RacA chromosome anchoring protein reduces the efficiency of plasmid segregation (by about two-fold), suggesting that it might contribute to anchoring the plasmid at the pole during sporulation. Our results suggest that the dynamic polymerization of AlfA mediates plasmid separation during both growth and sporulation.


Assuntos
Actinas/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Segregação de Cromossomos , DNA Bacteriano/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Divisão Celular , Cromossomos Bacterianos/metabolismo , Expressão Gênica , Genes Bacterianos , Proteínas de Fluorescência Verde/metabolismo , Integrases/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Plasmídeos/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Esporos Bacterianos/fisiologia , Células-Tronco/citologia
10.
Proc Natl Acad Sci U S A ; 102(49): 17658-63, 2005 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-16306264

RESUMO

Many bacterial plasmids and chromosomes rely on ParA ATPases for proper positioning within the cell and for efficient segregation to daughter cells. Here we demonstrate that the F-plasmid-partitioning protein SopA polymerizes into filaments in an ATP-dependent manner in vitro, and that the filaments elongate at a rate that is similar to that of plasmid separation in vivo. We show that SopA is a dynamic protein within the cell, undergoing cycles of polymerization and depolymerization, and shuttling back and forth between nucleoprotein complexes that are composed of the SopB protein bound to sopC-containing plasmids (SopB/sopC). The dynamic behavior of SopA is critical for Sop-mediated plasmid DNA segregation; mutations that lock SopA into a static polymer in the cell inhibit plasmid segregation. We show that SopA colocalizes with SopB/sopC in the cell and that SopB/sopC nucleates the assembly of SopA and is required for its dynamic behavior. When SopA is polymerized in vitro in the presence of SopB and sopC-containing DNA, SopA filaments emanate from the plasmid DNA in radial asters. We propose a mechanism in which plasmid separation is driven by the polymerization of SopA, and we speculate that the radial assembly of SopA polymers is responsible for positioning plasmids both before and after segregation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Mutação/genética , Plasmídeos/genética , Ligação Proteica , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...