Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Clin Nutr ; 114(4): 1328-1341, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34224554

RESUMO

BACKGROUND: Wheat bran (WB) has been associated with improved gastrointestinal health and a reduced risk of metabolic disorders. Reducing the particle size of WB might increase its fermentability and facilitate cross-feeding between the gut bacteria and in this way produce health effects. OBJECTIVES: We investigated the impact of WB with reduced particle size (WB RPS) on colonic fermentation and host health in normal-weight (NW) and obese (OB) participants compared with placebo (PL). METHODS: During 1 mo, 36 NW and 14 OB participants daily consumed 20 g WB RPS or PL (maltodextrin). Before and after the intervention, fasting serum and fecal SCFAs, fecal metabolite profiles, and microbiota composition were measured as fermentation parameters. Fecal output, fecal dry weight (%), fat excretion, transit, stool consistency, intestinal permeability, and serum total cholesterol, triglyceride, and C-reactive protein concentrations were measured as health parameters. The impact of WB RPS on the fermentation of other carbohydrates was assessed by quantifying postprandial cumulative serum 13C-SCFA after a challenge with 13C-inulin. RESULTS: WB RPS increased fasting serum acetate (P < 0.05) and total SCFA (P < 0.05) concentrations in OB participants. Fasting serum propionate concentrations were lower in OB than in NW participants at baseline (NW: 1.57 ± 0.75 µmol/L; OB: 0.89 ± 0.52 µmol/L; P < 0.01), but not after WB RPS (NW: 1.75 ± 0.77 µmol/L; OB: 1.35 ± 0.63 µmol/L; P = not significant). WB RPS did not enhance colonic fermentation of 13C-inulin and did not affect microbiota composition. Health parameters were not affected by the WB RPS intervention, either in NW or in OB participants. CONCLUSIONS: WB RPS increased fasting serum SCFA concentrations in OB participants. These changes were not associated with beneficial effects on host health.


Assuntos
Fibras na Dieta/administração & dosagem , Fibras na Dieta/análise , Ácidos Graxos Voláteis/sangue , Tamanho da Partícula , Polissacarídeos/administração & dosagem , Adolescente , Adulto , Estudos de Casos e Controles , Ingestão de Energia , Feminino , Análise de Alimentos , Humanos , Masculino , Pessoa de Meia-Idade , Nutrientes , Obesidade , Adulto Jovem
2.
J Med Internet Res ; 22(10): e18237, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33084583

RESUMO

BACKGROUND: Digital food registration via online platforms that are coupled to large food databases obviates the need for manual processing of dietary data. The reliability of such platforms depends on the quality of the associated food database. OBJECTIVE: In this study, we validate the database of MyFitnessPal versus the Belgian food composition database, Nubel. METHODS: After carefully given instructions, 50 participants used MyFitnessPal to each complete a 4-day dietary record 2 times (T1 and T2), with 1 month in between T1 and T2. Nutrient intake values were calculated either manually, using the food composition database Nubel, or automatically, using the database coupled to MyFitnessPal. First, nutrient values from T1 were used as a training set to develop an algorithm that defined upper limit values for energy intake, carbohydrates, fat, protein, fiber, sugar, cholesterol, and sodium. These limits were applied to the MyFitnessPal dataset extracted at T2 to remove extremely high and likely erroneous values. Original and cleaned T2 values were correlated with the Nubel calculated values. Bias was estimated using Bland-Altman plots. Finally, we simulated the impact of using MyFitnessPal for nutrient analysis instead of Nubel on the power of a study design that correlates nutrient intake to a chosen outcome variable. RESULTS: Per food portion, the following upper limits were defined: 1500 kilocalories for total energy intake, 95 grams (g) for carbohydrates, 92 g for fat, 52 g for protein, 22 g for fiber, 70 g for sugar, 600 mg for cholesterol, and 3600 mg for sodium. Cleaning the dataset extracted at T2 resulted in a 2.8% rejection. Cleaned MyFitnessPal values demonstrated strong correlations with Nubel for energy intake (r=0.96), carbohydrates (r=0.90), fat (r=0.90), protein (r=0.90), fiber (r=0.80), and sugar (r=0.79), but weak correlations for cholesterol (ρ=0.51) and sodium (ρ=0.53); all P values were ≤.001. No bias was found between both methods, except for a fixed bias for fiber and a proportional bias for cholesterol. A 5-10% power loss should be taken into account when correlating energy intake and macronutrients obtained with MyFitnessPal to an outcome variable, compared to Nubel. CONCLUSIONS: Dietary analysis with MyFitnessPal is accurate and efficient for total energy intake, macronutrients, sugar, and fiber, but not for cholesterol and sodium.


Assuntos
Registros de Dieta , Aplicativos Móveis/normas , Estado Nutricional/fisiologia , Adulto , Feminino , Humanos , Internet , Masculino , Reprodutibilidade dos Testes
3.
Crit Rev Food Sci Nutr ; 60(7): 1104-1122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30632785

RESUMO

Consumption of wheat bran (WB) has been associated with improved gastrointestinal health and a reduced risk for colorectal cancer, cardiovascular diseases and metabolic disorders. These benefits are likely mediated by a combination of mechanisms, including colonic fermentation of the WB fiber, fecal bulking and the prevention of oxidative damage due to its antioxidant capacities. The relative importance of those mechanisms is not known and may differ for each health effect. WB has been modified by reducing particle size, heat treatment or modifying tissue composition to improve its technological properties and facilitate bread making processes. However, the impact of those modifications on human health has not been fully elucidated. Some modifications reinforce whereas others attenuate the health effects of coarse WB. This review summarizes available WB modifications, the mechanisms by which WB induces health benefits, the impact of WB modifications thereon and the available evidence for these effects from in vitro and in vivo studies.


Assuntos
Dieta Saudável , Fibras na Dieta , Triticum/química , Colo/metabolismo , Colo/microbiologia , Fezes/química , Fermentação , Humanos
4.
Nutrients ; 9(1)2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28117694

RESUMO

Wheat bran (WB) is a constituent of whole grain products with beneficial effects for human health. Within the human colon, such insoluble particles may be colonized by specific microbial teams which can stimulate cross-feeding, leading to a more efficient carbohydrate fermentation and an increased butyrate production. We investigated the extent to which WB fractions with different properties affect the fermentation of other carbohydrates in the colon. Ten healthy subjects performed four test days, during which they consumed a standard breakfast supplemented with 10 g 13C-inulin. A total of 20 g of a WB fraction (unmodified WB, wheat bran with a reduced particle size (WB RPS), or de-starched pericarp-enriched wheat bran (PE WB)) was also added to the breakfast, except for one test day, which served as a control. Blood samples were collected at regular time points for 14 h, in order to measure 13C-labeled short-chain fatty acid (SCFA; acetate, propionate and butyrate) concentrations. Fermentation of 13C-inulin resulted in increased plasma SCFA for about 8 h, suggesting that a sustained increase in plasma SCFA can be achieved by administering a moderate dose of carbohydrates, three times per day. However, the addition of a single dose of a WB fraction did not further increase the 13C-SCFA concentrations in plasma, nor did it stimulate cross-feeding (Wilcoxon signed ranks test).


Assuntos
Fibras na Dieta/uso terapêutico , Disbiose/prevenção & controle , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Inulina/metabolismo , Prebióticos , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Desjejum , Isótopos de Carbono , Estudos Cross-Over , Fibras na Dieta/metabolismo , Disbiose/sangue , Disbiose/metabolismo , Disbiose/microbiologia , Ácidos Graxos Voláteis/sangue , Feminino , Fermentação , Humanos , Absorção Intestinal , Mucosa Intestinal/microbiologia , Masculino , Tamanho da Partícula , Período Pós-Prandial , Reprodutibilidade dos Testes , Método Simples-Cego , Adulto Jovem
5.
J Physiol ; 595(2): 541-555, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27510655

RESUMO

KEY POINTS: The short-chain fatty acids (SCFAs) are bacterial metabolites produced during the colonic fermentation of undigested carbohydrates, such as dietary fibre and prebiotics, and can mediate the interaction between the diet, the microbiota and the host. We quantified the fraction of colonic administered SCFAs that could be recovered in the systemic circulation, the fraction that was excreted via the breath and urine, and the fraction that was used as a precursor for glucose, cholesterol and fatty acids. This information is essential for understanding the molecular mechanisms by which SCFAs beneficially affect physiological functions such as glucose and lipid metabolism and immune function. ABSTRACT: The short-chain fatty acids (SCFAs), acetate, propionate and butyrate, are bacterial metabolites that mediate the interaction between the diet, the microbiota and the host. In the present study, the systemic availability of SCFAs and their incorporation into biologically relevant molecules was quantified. Known amounts of 13 C-labelled acetate, propionate and butyrate were introduced in the colon of 12 healthy subjects using colon delivery capsules and plasma levels of 13 C-SCFAs 13 C-glucose, 13 C-cholesterol and 13 C-fatty acids were measured. The butyrate-producing capacity of the intestinal microbiota was also quantified. Systemic availability of colonic-administered acetate, propionate and butyrate was 36%, 9% and 2%, respectively. Conversion of acetate into butyrate (24%) was the most prevalent interconversion by the colonic microbiota and was not related to the butyrate-producing capacity in the faecal samples. Less than 1% of administered acetate was incorporated into cholesterol and <15% in fatty acids. On average, 6% of colonic propionate was incorporated into glucose. The SCFAs were mainly excreted via the lungs after oxidation to 13 CO2 , whereas less than 0.05% of the SCFAs were excreted into urine. These results will allow future evaluation and quantification of SCFA production from 13 C-labelled fibres in the human colon by measurement of 13 C-labelled SCFA concentrations in blood.


Assuntos
Colo/metabolismo , Ácidos Graxos Voláteis/farmacocinética , Adulto , Cápsulas , Isótopos de Carbono , Colesterol/metabolismo , Colo/microbiologia , Estudos Cross-Over , Ácidos Graxos Voláteis/administração & dosagem , Ácidos Graxos Voláteis/sangue , Ácidos Graxos Voláteis/urina , Feminino , Microbioma Gastrointestinal/fisiologia , Glucose/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
6.
Nutrients ; 7(11): 8916-29, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26516911

RESUMO

Short chain fatty acids (SCFA), including acetate, propionate, and butyrate, are produced during bacterial fermentation of undigested carbohydrates in the human colon. In this study, we applied a stable-isotope dilution method to quantify the in vivo colonic production of SCFA in healthy humans after consumption of inulin. Twelve healthy subjects performed a test day during which a primed continuous intravenous infusion with [1-(13)C]acetate, [1-(13)C]propionate and [1-(13)C]butyrate (12, 1.2 and 0.6 µmol·kg(-1)·min(-1), respectively) was applied. They consumed 15 g of inulin with a standard breakfast. Breath and blood samples were collected at regular times during the day over a 12 h period. The endogenous rate of appearance of acetate, propionate, and butyrate was 13.3 ± 4.8, 0.27 ± 0.09, and 0.28 ± 0.12 µmol·kg(-1)·min(-1), respectively. Colonic inulin fermentation was estimated to be 137 ± 75 mmol acetate, 11 ± 9 mmol propionate, and 20 ± 17 mmol butyrate over 12 h, assuming that 40%, 10%, and 5% of colonic derived acetate, propionate, and butyrate enter the systemic circulation. In conclusion, inulin is mainly fermented into acetate and, to lesser extents, into butyrate and propionate. Stable isotope technology allows quantifying the production of the three main SCFA in vivo and proved to be a practical tool to investigate the extent and pattern of SCFA production.


Assuntos
Isótopos de Carbono/metabolismo , Colo/metabolismo , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Inulina/metabolismo , Estado Nutricional , Acetatos/metabolismo , Adulto , Bactérias/metabolismo , Butiratos/metabolismo , Colo/microbiologia , Ácidos Graxos Voláteis/biossíntese , Ácidos Graxos Voláteis/farmacocinética , Feminino , Humanos , Masculino , Propionatos/metabolismo , Valores de Referência , Adulto Jovem
7.
Nutrients ; 7(9): 7505-22, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26371036

RESUMO

Whether or not abdominal symptoms occur in subjects with small intestinal lactose malabsorption might depend on differences in colonic fermentation. To evaluate this hypothesis, we collected fecal samples from subjects with lactose malabsorption with abdominal complaints (LM-IT, n = 11) and without abdominal complaints (LM-T, n = 8) and subjects with normal lactose digestion (NLD, n = 15). Lactose malabsorption was diagnosed using a (13)C-lactose breath test. Colonic fermentation was characterized in fecal samples at baseline and after incubation with lactose for 3 h, 6 h and 24 h through a metabolomics approach using gas chromatography-mass spectrometry (GC-MS). Fecal water cytotoxicity was analyzed using a colorimetric assay. Fecal water cytotoxicity was not different between the three groups (Kruskall-Wallis p = 0.164). Cluster analysis of the metabolite patterns revealed separate clusters for NLD, LM-T and LM-IT samples at baseline and after 24 h incubation with lactose. Levels of 5-methyl-2-furancarboxaldehyde were significantly higher in LM-IT and LM-T compared to NLD whereas those of an unidentified aldehyde were significantly higher in LM-IT compared to LM-T and NLD. Incubation with lactose increased short chain fatty acid (SCFA) concentrations more in LM-IT and LM-T compared to NLD. In conclusion, fermentation patterns were clearly different in NLD, LM-IT and LM-T, but not related to differences in fecal water cytotoxicity.


Assuntos
Colo/metabolismo , Fezes/química , Fermentação , Intolerância à Lactose/metabolismo , Lactose/metabolismo , Adulto , Biomarcadores/metabolismo , Testes Respiratórios , Estudos de Casos e Controles , Sobrevivência Celular , Análise por Conglomerados , Colo/fisiopatologia , Colorimetria , Análise Discriminante , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Células HT29 , Humanos , Absorção Intestinal , Intolerância à Lactose/complicações , Intolerância à Lactose/diagnóstico , Intolerância à Lactose/fisiopatologia , Análise dos Mínimos Quadrados , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...