Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298291

RESUMO

Obesity (Ob), which has dramatically increased in the last decade, is one of the main risk factors that contribute to the incidence and progression of osteoarthritis (OA). Targeting the characteristics of obesity-associated osteoarthritis (ObOA) may offer new chances for precision medicine strategies in this patient cohort. First, this review outlines how the medical perspective of ObOA has shifted from a focus on biomechanics to the significant contribution of inflammation, mainly mediated by changes in the adipose tissue metabolism through the release of adipokines and the modification of fatty acid (FA) compositions in joint tissues. Preclinical and clinical studies on n-3 polyunsaturated FAs (PUFAs) are critically reviewed to outline the strengths and weaknesses of n-3 PUFAs' role in alleviating inflammatory, catabolic and painful processes. Emphasis is placed on potential preventive and therapeutic nutritional strategies based on n-3 PUFAs, with a focus on ObOA patients who could specifically benefit from reformulating the dietary composition of FAs towards a protective phenotype. Finally, tissue engineering approaches that involve the delivery of n-3 PUFAs directly into the joint are explored to address the perspectives and current limitations, such as safety and stability issues, for implementing preventive and therapeutic strategies based on dietary compounds in ObOA patients.


Assuntos
Ácidos Graxos Ômega-3 , Osteoartrite , Humanos , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-3/metabolismo , Osteoartrite/etiologia , Osteoartrite/prevenção & controle , Obesidade/complicações , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Ácidos Graxos/metabolismo , Suplementos Nutricionais
2.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555503

RESUMO

Knee osteoarthritis (OA) is one of the most multifactorial joint disorders in adults. It is characterized by degenerative and inflammatory processes that are responsible for joint destruction, pain and stiffness. Despite therapeutic advances, the search for alternative strategies to target inflammation and pain is still very challenging. In this regard, there is a growing body of evidence for the role of several bioactive dietary molecules (BDMs) in targeting inflammation and pain, with promising clinical results. BDMs may be valuable non-pharmaceutical solutions to treat and prevent the evolution of early OA to more severe phenotypes, overcoming the side effects of anti-inflammatory drugs. Among BDMs, polyphenols (PPs) are widely studied due to their abundance in several plants, together with their benefits in halting inflammation and pain. Despite their biological relevance, there are still many questionable aspects (biosafety, bioavailability, etc.) that hinder their clinical application. This review highlights the mechanisms of action and biological targets modulated by PPs, summarizes the data on their anti-inflammatory and anti-nociceptive effects in different preclinical in vitro and in vivo models of OA and underlines the gaps in the knowledge. Furthermore, this work reports the preliminary promising results of clinical studies on OA patients treated with PPs and discusses new perspectives to accelerate the translation of PPs treatment into the clinics.


Assuntos
Osteoartrite do Joelho , Polifenóis , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Osteoartrite do Joelho/tratamento farmacológico , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
Polymers (Basel) ; 14(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36236019

RESUMO

The biological and therapeutic limits of traditional 2D culture models, which only partially mimic the complexity of cancer, have recently emerged. In this study, we used a 3D bioprinting platform to process a collagen-based hydrogel with embedded osteosarcoma (OS) cells. The human OS U-2 OS cell line and its resistant variant (U-2OS/CDDP 1 µg) were considered. The fabrication parameters were optimized to obtain 3D printed constructs with overall morphology and internal microarchitecture that accurately match the theoretical design, in a reproducible and stable process. The biocompatibility of the 3D bioprinting process and the chosen collagen bioink in supporting OS cell viability and metabolism was confirmed through multiple assays at short- (day 3) and long- (day 10) term follow-ups. In addition, we tested how the 3D collagen-based bioink affects the tumor cell invasive capabilities and chemosensitivity to cisplatin (CDDP). Overall, we developed a new 3D culture model of OS cells that is easy to set up, allows reproducible results, and better mirrors malignant features of OS than flat conditions, thus representing a promising tool for drug screening and OS cell biology research.

4.
Knee Surg Sports Traumatol Arthrosc ; 30(3): 773-781, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33464397

RESUMO

PURPOSE: The aim of this study was to compare three procedures to exploit adipose-derived cells for the treatment of osteoarthritis (OA) in a preclinical model, to understand their therapeutic potential and identify the most suitable approach for the clinical application. METHODS: Biological samples from adipose tissue, processed by mechanical micro-fragmentation (MF), enzymatic digestion (SVF) or cell expansion (ADSCs), were first characterized in vitro and then used in vivo in a surgically induced OA rabbit model: Group 1-control group (untreated 12 knees/saline 12 knees), Group 2-MF (24 knees), Group 3-SVF (24 knees), Group 4-ADSCs (24 knees). Macroscopic, histological, histomorphometric, immunohistochemical and blood and synovial fluid analyses were evaluated at 2 and 4 months from the treatments. RESULTS: Samples obtained by the three procedures yielded 85-95% of viable cells. In vivo assessments showed no significant side effects or inflammatory responses after the injection. The macroscopic Hanashi score did not show significant differences among treated groups and controls. The histopathological evaluation of synovial tissues showed lower signs of synovitis for MF, although the semiquantitative analysis (Krenn score) did not reach statistical significance. Instead, MF showed the best results both in terms of qualitative and semi-quantitative evaluations of articular cartilage, with a more uniform staining, a smoother surface and a significantly better Laverty score (p = 0.004). CONCLUSION: MF, SVF, and expanded ADSCs did not elicit significant local or systemic adverse reactions in this preclinical OA model. Among the different methods used to exploit the adipose tissue potential, MF showed the most promising findings in particular in terms of protection of the articular surface from the joint degenerative OA processes. LEVEL OF EVIDENCE: Preclinical animal study.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Tecido Adiposo , Animais , Cartilagem Articular/cirurgia , Digestão , Injeções Intra-Articulares/métodos , Osteoartrite do Joelho/terapia , Coelhos
5.
Polymers (Basel) ; 13(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771382

RESUMO

Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations.

6.
Cartilage ; 13(2_suppl): 1770S-1779S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34474579

RESUMO

OBJECTIVE: The search for an effective and long-lasting strategy to treat osteochondral defects (OCD) is a great challenge. Regenerative medicine launched a new era of research in orthopaedics for restoring normal tissue functions. The aim of this study was to test the healing potential of Rigenera micrografting technology in a rat model of OCD by investigating 2 cartilage donor sites. METHODS: Full-thickness OCD was bilaterally created in the knee joints of rats. Animals were randomly divided into 2 groups based on the anatomical site used for micrograft collection: articular (TO) and xiphoid (XA). Micrograft was injected into the knee via an intra-articular approach. The contralateral joint served as the control. Euthanasia was performed 2 months after the set-up of OCD. Histological evaluations foresaw hematoxylin/eosin and safranin-O/fast green staining, the modified O'Driscoll score, and collagen 1A1 and 2A1 immunostaining. Kruskal-Wallis and the post hoc Dunn test were performed to evaluate differences among groups. RESULTS: Histological results showed defect filling in both autologous micrografts. The TO group displayed tissue repair with more hyaline-like characteristics than its control (P < 0.01). A fibrocartilaginous aspect was instead noticed in the XA group. Immunohistochemical assessments on type 2A1 and type 1 collagens confirmed the best histological results in the TO group. CONCLUSIONS: TO and XA groups contributed to a different extent to fill the OCD lesions. TO group provided the best histological and immunohistochemical results; therefore, it could be a promising method to treat OCD after the validation in a larger animal model.


Assuntos
Cartilagem Articular , Fraturas Intra-Articulares , Animais , Cartilagem Articular/cirurgia , Colágeno , Articulação do Joelho/patologia , Articulação do Joelho/cirurgia , Ratos , Transplante Autólogo
7.
Materials (Basel) ; 14(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202765

RESUMO

Extrusion bioprinting is considered promising in cartilage tissue engineering since it allows the fabrication of complex, customized, and living constructs potentially suitable for clinical applications. However, clinical translation is often complicated by the variability and unknown/unsolved issues related to this technology. The aim of this study was to perform a risk analysis on a research process, consisting in the bioprinting of a stem cell-laden collagen bioink to fabricate constructs with cartilage-like properties. The method utilized was the Failure Mode and Effect Analysis/Failure Mode and Effect Criticality Analysis (FMEA/FMECA) which foresees a mapping of the process to proactively identify related risks and the mitigation actions. This proactive risk analysis allowed the identification of forty-seven possible failure modes, deriving from seventy-one potential causes. Twenty-four failure modes displayed a high-risk level according to the selected evaluation criteria and threshold (RPN > 100). The results highlighted that the main process risks are a relatively low fidelity of the fabricated structures, unsuitable parameters/material properties, the death of encapsulated cells due to the shear stress generated along the nozzle by mechanical extrusion, and possible biological contamination phenomena. The main mitigation actions involved personnel training and the implementation of dedicated procedures, system calibration, printing conditions check, and, most importantly, a thorough knowledge of selected biomaterial and cell properties that could be built either through the provided data/scientific literature or their preliminary assessment through dedicated experimental optimization phase. To conclude, highlighting issues in the early research phase and putting in place all the required actions to mitigate risks will make easier to develop a standardized process to be quickly translated to clinical use.

8.
ACS Biomater Sci Eng ; 7(7): 3306-3320, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34101410

RESUMO

Robotic dispensing-based 3D bioprinting represents one of the most powerful technologies to develop hydrogel-based 3D constructs with enormous potential in the field of regenerative medicine. The optimization of hydrogel printing parameters, proper geometry and internal architecture of the constructs, and good cell viability during the bioprinting process are the essential requirements. In this paper, an analytical model based on the hydrogel rheological properties was developed to predict the extruded filament width in order to maximize the printed structure's fidelity to the design. Viscosity data of two natural hydrogels were imputed to a power-law model to extrapolate the filament width. Further, the model data were validated by monitoring the obtained filament width as the output. Shear stress values occurring during the bioprinting process were also estimated. Human mesenchymal stromal cells (hMSCs) were encapsulated in the silk fibroin-gelatin (G)-based hydrogel, and a 3D bioprinting process was performed to produce cell-laden constructs. Live and dead assay allowed estimating the impact of needle shear stress on cell viability after the bioprinting process. Finally, we tested the potential of hMSCs to undergo chondrogenic differentiation by evaluating the cartilaginous extracellular matrix production through immunohistochemical analyses. Overall, the use of the proposed analytical model enables defining the optimal printing parameters to maximize the fabricated constructs' fidelity to design parameters before the process execution, enabling to achieve more controlled and standardized products than classical trial-and-error approaches in the biofabrication of engineered constructs. Employing modeling systems exploiting the rheological properties of the hydrogels might be a valid tool in the future for guaranteeing high cell viability and for optimizing tissue engineering approaches in regenerative medicine applications.


Assuntos
Bioimpressão , Fibroínas , Células Cultivadas , Condrogênese , Gelatina , Humanos , Hidrogéis , Células-Tronco Mesenquimais , Engenharia Tecidual
9.
J Clin Med ; 10(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925222

RESUMO

Osteoarthritis (OA) is a multifaceted musculoskeletal disorder, with a high prevalence worldwide. Articular cartilage and synovial membrane are among the main biological targets in the OA microenvironment. Gaining more knowledge on the accuracy of preclinical in vitro OA models could open innovative avenues in regenerative medicine to bridge major gaps, especially in translation from animals to humans. Our methodological approach entailed searches on Scopus, the Web of Science Core Collection, and EMBASE databases to select the most relevant preclinical in vitro models for studying OA. Predicting the biological response of regenerative strategies requires developing relevant preclinical models able to mimic the OA milieu influencing tissue responses and organ complexity. In this light, standard 2D culture models lack critical properties beyond cell biology, while animal models suffer from several limitations due to species differences. In the literature, most of the in vitro models only recapitulate a tissue compartment, by providing fragmented results. Biotechnological advances may enable scientists to generate new in vitro models that combine easy manipulation and organ complexity. Here, we review the state-of-the-art of preclinical in vitro models in OA and outline how the different preclinical systems (inflammatory/biomechanical/microfluidic models) may be valid tools in regenerative medicine, describing their pros and cons. We then discuss the prospects of specific and combinatorial models to predict biological responses following regenerative approaches focusing on mesenchymal stromal cells (MSCs)-based therapies to reduce animal testing.

10.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825443

RESUMO

Excessive bone resorption by osteoclasts (OCs) covers an essential role in developing bone diseases, such as osteoporosis (OP) and rheumatoid arthritis (RA). Monocytes or macrophages fusion and multinucleation (M-FM) are key processes for generating multinucleated mature cells with essential roles in bone remodelling. Depending on the phenotypic heterogeneity of monocyte/macrophage precursors and the extracellular milieu, two distinct morphological and functional cell types can arise mature OCs and giant cells (GCs). Despite their biological relevance in several physiological and pathological responses, many gaps exist in our understanding of their formation and role in bone, including the molecular determinants of cell fusion and multinucleation. Here, we outline fusogenic molecules during M-FM involved in OCs and GCs formation in healthy conditions and during OP and RA. Moreover, we discuss the impact of the inflammatory milieu on modulating macrophages phenotype and their differentiation towards mature cells. Methodological approach envisaged searches on Scopus, Web of Science Core Collection, and EMBASE databases to select relevant studies on M-FM, osteoclastogenesis, inflammation, OP, and RA. This review intends to give a state-of-the-art description of mechanisms beyond osteoclastogenesis and M-FM, with a focus on OP and RA, and to highlight potential biological therapeutic targets to prevent extreme bone loss.


Assuntos
Artrite Reumatoide/patologia , Macrófagos/metabolismo , Osteoclastos/metabolismo , Osteoporose/patologia , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/terapia , Matriz Óssea/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Fusão Celular , Difosfonatos/farmacologia , Expressão Gênica , Células Gigantes/metabolismo , Humanos , Macrófagos/patologia , Monócitos , Osteogênese/fisiologia , Osteoporose/metabolismo , Osteoporose/terapia
11.
Cells ; 8(11)2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652798

RESUMO

There has been considerable advancement over the last few years in the treatment of osteoarthritis, common chronic disease and a major cause of disability in older adults. In this pathology, the entire joint is involved and the regeneration of articular cartilage still remains one of the main challenges, particularly in an actively inflammatory environment. The recent strategies for osteoarthritis treatment are based on the use of different therapeutic solutions such as cell and gene therapies and tissue engineering. In this review, we provide an overview of current regenerative strategies highlighting the pros and cons, challenges and opportunities, and we try to identify areas where future work should be focused in order to advance this field.


Assuntos
Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Osteoartrite/terapia , Animais , Condrócitos/metabolismo , Modelos Animais de Doenças , Terapia Genética/métodos , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Regeneração/fisiologia , Engenharia Tecidual/métodos
12.
J Toxicol Environ Health A ; 82(16): 891-912, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31545145

RESUMO

Additive manufacturing (commonly referred to as 3D printing) created an attractive approach for regenerative medicine research in musculoskeletal tissue engineering. Given the high number of fabrication technologies available, characterized by different working and physical principles, there are several related risks that need to be managed to protect operators. Recently, an increasing number of studies demonstrated that several types of 3D printers are emitters of ultrafine particles and volatile organic compounds whose harmful effects through inhalation, ingestion and skin uptake are known. Confirmation of danger of these products is not yet final, but this provides a basis to adopt preventive measures in agreement with the precautionary principle. The purpose of this investigation was to provide a useful tool to the researcher for managing the risks related to the use of different kinds of three-dimensional printers (3D printers) in the lab, especiallyconcerning orthopedic applications, and to define appropriate control measures. Particular attention was given to new emerging risks and to developing response strategies for a comprehensive coverage of the health and safety of operators.


Assuntos
Nanopartículas/efeitos adversos , Exposição Ocupacional/efeitos adversos , Saúde Ocupacional/normas , Material Particulado/efeitos adversos , Impressão Tridimensional/normas , Engenharia Tecidual/normas , Compostos Orgânicos Voláteis/efeitos adversos , Adulto , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sistema Musculoesquelético , Medição de Risco
13.
Int J Mol Sci ; 20(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146351

RESUMO

Evaluating cell migration after cell-based treatment is important for several disorders, including osteoarthritis (OA), as it might influence the clinical outcome. This research explores migrating expanded-adipose stromal cells (ASCs) and adipose niches after enzymatic and mechanical processes. Bilateral anterior cruciate ligament transection induced a mild grade of OA at eight weeks in adult male New Zealand rabbits. ASCs, enzymatic stromal vascular fraction (SVF), and micro fragmented adipose tissue (MFAT) were intra-articularly injected in the knee joint. Assessments of cell viability and expression of specific markers, including CD-163 wound-healing macrophages, were done. Cell migration was explored through labelling with PKH26 dye at 7 and 30 days alongside co-localization analyses for CD-146. All cells showed good viability and high percentages of CD-90 and CD-146. CD-163 was significantly higher in MFAT compared to SVF. Distinct migratory potential and time-dependent effects were observed among cell-based treatments. At day 7, both ASCs and SVF migrated towards synovium, whereas for MFAT versus cartilage, a different migration pattern was noticed at day 30. The long-term distinct cell migration of ASCs, SVF, and MFAT open interesting clinical insights on their potential use for OA treatment. Moreover, the highest expression of CD-163 in MFAT, rather than SVF, might have an important role in directly mediating cartilage tissue repair responses.


Assuntos
Adipócitos/transplante , Osteoartrite do Joelho/terapia , Regeneração , Transplante de Células-Tronco/métodos , Adipócitos/citologia , Adipócitos/fisiologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Movimento Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Cultura Primária de Células/métodos , Coelhos
14.
Int Orthop ; 43(1): 25-34, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30324310

RESUMO

PURPOSE: To evaluate the regenerative potential of surnatants (SNs) from bone marrow concentrate (SN-BMC) and expanded mesenchymal stromal cells (SN-MSCs) loaded onto a collagen scaffold (SC) in comparison with cell-based treatments (BMC and MSCs) in an osteochondral (OC) defect model in rabbits. METHODS: OC defects (3 × 5 mm) were created in the rabbit femoral condyles and treated with SC alone or combined with SN-BMC, SN-MSCs, BMC, and MSCs. In control groups, the defects were left untreated. At three and six months, the quality of regenerated tissue was evaluated with macroscopic, histologic, microtomographic, and immunohistochemical assessments. The production of several immunoenzymatic markers was measured in the synovial fluid. RESULTS: All proposed treatments improved OC regeneration in comparison with untreated and SC-treated defects. Both BMC and MSCs showed a similar healing potential than their respective SNs, with the best performance exerted by BMC as demonstrated with macroscopic and histological scores and type I and II collagen results. CONCLUSIONS: SNs loaded onto SC exerted a positive effect on OC defect regeneration, underlying the biological significance of the trophic factors, thus potentially opening new opportunities for the use of cell-free-based therapies. BMC was confirmed to be the most beneficial treatment.


Assuntos
Transplante de Medula Óssea , Fraturas Intra-Articulares/cirurgia , Transplante de Células-Tronco Mesenquimais , Animais , Medula Óssea/cirurgia , Células da Medula Óssea , Colágeno/metabolismo , Articulação do Joelho , Células-Tronco Mesenquimais/fisiologia , Modelos Animais , Coelhos , Cicatrização
15.
ACS Biomater Sci Eng ; 5(3): 1518-1533, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405626

RESUMO

Scaffold-based bone tissue engineering strategies fail to meet the clinical need to fabricate patient-specific and defect shape-specific, anatomically relevant load-bearing bone constructs. 3D bioprinting strategies are gaining major interest as a potential alternative, but design of a specific bioink is still a major challenge that can modulate key signaling pathways to induce osteogenic differentiation of progenitor cells, as well as offer appropriate microenvironment to augment mineralization. In the present study, we developed silk fibroin protein and gelatin-based conjugated bioink, which showed localized presence and sustained release of calcium. Presence of 2.6 mM Ca2+ ions within the bioink could further induce enhanced osteogenesis of Bone marrow derived progenitor cells (hMSCs) compared to the bioink without calcium, or same concentration of calcium added to the media, as evidenced by upregulated gene expression of osteogenic markers. This study generated unprecedented mechanistic insights on the role of fibroin-gelatin-CaCl2 bioink in modulating expression of several proteins which are known to play crucial role in bone regeneration as well as key signaling pathways such as ß-catenin, BMP signaling pathway, Parathyroid hormone-dependent signaling pathway, Forkhead box O (FOXO) pathway, and Hippo pathways in hMSC-laden bioprinted constructs.

16.
Materials (Basel) ; 11(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227656

RESUMO

Cartilage lesions fail to heal spontaneously, leading to the development of chronic conditions which worsen the life quality of patients. Three-dimensional scaffold-based bioprinting holds the potential of tissue regeneration through the creation of organized, living constructs via a "layer-by-layer" deposition of small units of biomaterials and cells. This technique displays important advantages to mimic natural cartilage over traditional methods by allowing a fine control of cell distribution, and the modulation of mechanical and chemical properties. This opens up a number of new perspectives including personalized medicine through the development of complex structures (the osteochondral compartment), different types of cartilage (hyaline, fibrous), and constructs according to a specific patient's needs. However, the choice of the ideal combination of biomaterials and cells for cartilage bioprinting is still a challenge. Stem cells may improve material mimicry ability thanks to their unique properties: the immune-privileged status and the paracrine activity. Here, we review the recent advances in cartilage three-dimensional, scaffold-based bioprinting using stem cells and identify future developments for clinical translation. Database search terms used to write this review were: "articular cartilage", "menisci", "3D bioprinting", "bioinks", "stem cells", and "cartilage tissue engineering".

17.
Tissue Eng Part C Methods ; 24(2): 121-133, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29108480

RESUMO

The evaluation of key factors modulating cell homing following injection can provide new insights in the comprehension of unsolved biological questions about the use of cell therapies for osteoarthritis (OA). The main purpose of this in vivo study was to investigate the biodistribution of an intra-articular injection of mesenchymal stromal cells (MSCs) and bone marrow concentrate (BMC) in a rabbit OA model and whether the additional use of sodium hyaluronate (HA) could modulate their migration and delay joint degeneration. OA was surgically induced in adult male New Zealand rabbits. A group of animals was used to test the biodistribution of labeled cells alone or with HA at 7 and 14 days to investigate cell migration. The efficacy of treatments was evaluated in other experimental groups at 2 months. Histology and immunohistochemistry for markers identifying anabolic and catabolic processes in the cartilage and meniscus, or macrophage subset population in the synovial membrane, were performed. Kruskal-Wallis test, followed by post hoc Dunn's test, and Spearman's rank-order correlation method were used. MSCs and BMC preferentially migrate toward tissue areas showing OA features in the meniscus and cartilage and in detail near inflammatory zones in the synovial membrane. The combination with HA contributed to boost cell migration toward articular cartilage. In general, both labeled cells combined with HA were found near cell cluster and fissures in the cartilage and meniscus, respectively, and close to areas of synovial membrane showing mainly anti-inflammatory macrophages. A promotion of joint repair was observed at different levels for all treatments, although BMC-HA treatment resulted as the best strategy to support joint repair. This last, displayed a good protein expression of type II collagen in the cartilage, as well as the presence of anti-inflammatory macrophages in the synovial membrane at 2 months from the treatment. Studies tracking cell biodistribution indicate that priming progenitor cells with HA modulated cell homing favoring not only attachment but also their integration within articular cartilage.


Assuntos
Cartilagem Articular/citologia , Ácido Hialurônico/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Osteoartrite/terapia , Animais , Cartilagem Articular/fisiologia , Células Cultivadas , Injeções Intra-Articulares , Masculino , Células-Tronco Mesenquimais/fisiologia , Coelhos , Distribuição Tecidual
18.
Mater Sci Eng C Mater Biol Appl ; 78: 1246-1262, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575964

RESUMO

This review is intended to give a state of the art description of scaffold-based strategies utilized in Bone Tissue Engineering. Numerous scaffolds have been tested in the orthopedic field with the aim of improving cell viability, attachment, proliferation and homing, osteogenic differentiation, vascularization, host integration and load bearing. The main traits that characterize a scaffold suitable for bone regeneration concerning its biological requirements, structural features, composition, and types of fabrication are described in detail. Attention is then focused on conventional and Rapid Prototyping scaffold manufacturing techniques. Conventional manufacturing approaches are subtractive methods where parts of the material are removed from an initial block to achieve the desired shape. Rapid Prototyping techniques, introduced to overcome standard techniques limitations, are additive fabrication processes that manufacture the final three-dimensional object via deposition of overlying layers. An important improvement is the possibility to create custom-made products by means of computer assisted technologies, starting from patient's medical images. As a conclusion, it is highlighted that, despite its encouraging results, the clinical approach of Bone Tissue Engineering has not taken place on a large scale yet, due to the need of more in depth studies, its high manufacturing costs and the difficulty to obtain regulatory approval. PUBMED search terms utilized to write this review were: "Bone Tissue Engineering", "regenerative medicine", "bioactive scaffolds", "biomimetic scaffolds", "3D printing", "3D bioprinting", "vascularization" and "dentistry".


Assuntos
Engenharia Tecidual , Bioimpressão , Osso e Ossos , Humanos , Osteogênese , Alicerces Teciduais
19.
Cartilage ; 8(1): 50-60, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27994720

RESUMO

OBJECTIVE: The low regenerative potential of cartilage contributed to the development of different cell therapies aimed to improve the clinical outcome in young patients with Osteochondral Lesions of the Talus (OLT). This study is designed to assess the regenerative potential of autologous matrix-induced Bone Marrow Aspirate Concentrate (mBMAC) and matrix-induced Autologous Chondrocyte Implantation (mACI) evaluating, on a small number of osteochondral biopsies, the expression of some catabolic, inflammatory, and pain mediators. DESIGN: Twenty-two patients with OLT were analyzed in this study; 7 were treated with mACI and 15 with mBMAC. Informed consent was obtained from all the patients. Clinical assessments were performed pre-operatively and at 12, 24, and 36 months after surgery using the American Orthopedic Foot and Ankle Society (AOFAS). Histology and immunohistochemistry were used to assess cartilage repair at 24 months. Data were analyzed using non-parametric Wilcoxon-Mann-Whitney and Spearman tests. RESULTS: A remarkable improvement in AOFAS score was noticed for both treatments up to 36 months; however, patients treated with mACI reported the best AOFAS score. Various degrees of tissue remodeling were observed by histological analysis for both cell strategies. However, mBMAC treatment showed a higher expression of some fibrous and hypertrophic markers compared to mACI group. A mild positivity for nerve growth factor, as pain mediator, was noticed for both treatments.M. CONCLUSIONS: Our findings demonstrated the best histological and clinical results following mACI treatment since different fibrotic and hypertrophic features were evident in the mBMAC group at 24-month follow-up.

20.
Tissue Eng Part C Methods ; 22(6): 608-19, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27151837

RESUMO

INTRODUCTION: Cell-based therapies are becoming a valuable tool to treat osteoarthritis (OA). This study investigated and compared the regenerative potential of bone marrow concentrate (BMC) and mesenchymal stem cells (MSC), both engineered with Hyaff(®)-11 (HA) for OA treatment in a sheep model. METHODS: OA was induced via unilateral medial meniscectomy. Bone marrow was aspirated from the iliac crest, followed by concentration processes or cell isolation and expansion to obtain BMC and MSC, respectively. Treatments consisted of autologous BMC and MSC seeded onto HA. The regenerative potential of bone, cartilage, menisci, and synovia was monitored using macroscopy, histology, immunohistochemistry, and micro-computed tomography at 12 weeks post-op. Data were analyzed using the general linear model with adjusted Sidak's multiple comparison and Spearman's tests. RESULTS: BMC-HA treatment showed a greater repair ability in inhibiting OA progression compared to MSC-HA, leading to a reduction of inflammation in cartilage, meniscus, and synovium. Indeed, the decrease of inflammation positively contributed to counteract the progression of fibrotic and hypertrophic processes, known to be involved in tissue failure. Moreover, the treatment with BMC-HA showed the best results in allowing meniscus regeneration. Minor healing effects were noticed at bone level for both cell strategies; however, a downregulation of subchondral bone thickness (Cs.Th) was found in both cell treatments compared to the OA group in the femur. CONCLUSION: The transplantation of BMC-HA provided the best effects in supporting regenerative processes in cartilage, meniscus, and synovium and at less extent in bone. On the whole, both MSC and BMC combined with HA reduced inflammation and contributed to switch off fibrotic and hypertrophic processes. The observed regenerative potential by BMC-HA on meniscus could open new perspectives, suggesting its use not only for OA care but also for the treatment of meniscal lesions, even if further analyses are necessary to confirm its healing potential at long-term follow-up.


Assuntos
Células da Medula Óssea/citologia , Doenças das Cartilagens/terapia , Modelos Animais de Doenças , Menisco , Células-Tronco Mesenquimais/citologia , Osteoartrite/terapia , Regeneração/fisiologia , Animais , Doenças das Cartilagens/patologia , Feminino , Osteoartrite/patologia , Ovinos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...