Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 6(4): 1583-1594, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33481585

RESUMO

Determining local concentrations of the analytes in state-of-the-art microreactors is essential for the development of optimized and safe processes. However, the selective, parallel monitoring of all relevant reactants and products in a multianalyte environment is challenging. Electrochemical microsensors can provide unique information on the reaction kinetics and overall performance of the hydrogen peroxide synthesis process in microreactors, thanks to their high spatial and temporal resolution and their ability to measure in situ, in contrast to other techniques. We present a chronoamperometric approach which allows the selective detection of the dissolved gases hydrogen and oxygen and their reaction product hydrogen peroxide on the same platinum microelectrode in an aqueous electrolyte. The method enables us to obtain the concentration of each analyte using three specific potentials and to subtract interfering currents from the mixed signal. While hydrogen can be detected independently, no potentials can be found for a direct, selective measurement of oxygen and hydrogen peroxide. Instead, it was found that for combined signals, the individual contribution of all analytes superimposes linearly additive. We showed that the concentrations determined from the subtracted signals correlate very well with results obtained without interfering analytes present. For the first time, this approach allowed the mapping of the distribution of the analytes hydrogen, oxygen, and hydrogen peroxide inside a multiphase membrane microreactor, paving the way for online process control.


Assuntos
Peróxido de Hidrogênio , Oxigênio , Gases , Platina
2.
Rev Sci Instrum ; 92(12): 124101, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972445

RESUMO

A continuous-flow reactor and a continuous-flow setup compatible with operando x-ray absorption spectroscopy (XAS) were designed for safely studying liquid-phase reactions on solid high atomic number transition metal catalysts (e.g., Au, Pd, and Pt) under pressures up to 100 bars with temperatures up to 100 °C. The reactor has a stainless-steel body, 2 mm thick polyether ether ketone (PEEK) x-ray windows, and a low internal volume of 0.31 ml. The rectangular chamber (6 × 5 × 1 mm3) between the PEEK x-ray windows allows us to perform XAS studies of packed beds or monoliths in the transmission mode at any position in the cell over a length of 60 mm. A 146° wide-angle beam access also allows recording complementary x-ray fluorescence or x-ray diffraction signals. The setup was engineered to continuously feed a single-phase liquid flow saturated with one or more gaseous reactants to the liquid-solid XAS reactor containing no free gas phase for enhanced process safety and sample homogeneity. The proof of concept for the continuous-flow XAS cell and high-pressure setup was provided by operando XAS measurements during the direct synthesis of hydrogen peroxide at room temperature and 40 bars using a 35 ± 5 mg catalyst (1 wt. % Pd/TiO2) and inline near-infrared spectroscopy. The experiments prove that the system is well suited to follow the reaction in the liquid phase while recording high-quality XAS data, paving the way for detailed studies on the catalyst structure and structure-activity relationships.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...