Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 12: 655707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262593

RESUMO

In addition to their common usages to study gene expression, RNA-seq data accumulated over the last 10 years are a yet-unexploited resource of SNPs in numerous individuals from different populations. SNP detection by RNA-seq is particularly interesting for livestock species since whole genome sequencing is expensive and exome sequencing tools are unavailable. These SNPs detected in expressed regions can be used to characterize variants affecting protein functions, and to study cis-regulated genes by analyzing allele-specific expression (ASE) in the tissue of interest. However, gene expression can be highly variable, and filters for SNP detection using the popular GATK toolkit are not yet standardized, making SNP detection and genotype calling by RNA-seq a challenging endeavor. We compared SNP calling results using GATK suggested filters, on two chicken populations for which both RNA-seq and DNA-seq data were available for the same samples of the same tissue. We showed, in expressed regions, a RNA-seq precision of 91% (SNPs detected by RNA-seq and shared by DNA-seq) and we characterized the remaining 9% of SNPs. We then studied the genotype (GT) obtained by RNA-seq and the impact of two factors (GT call-rate and read number per GT) on the concordance of GT with DNA-seq; we proposed thresholds for them leading to a 95% concordance. Applying these thresholds to 767 multi-tissue RNA-seq of 382 birds of 11 chicken populations, we found 9.5 M SNPs in total, of which ∼550,000 SNPs per tissue and population with a reliable GT (call rate ≥ 50%) and among them, ∼340,000 with a MAF ≥ 10%. We showed that such RNA-seq data from one tissue can be used to (i) detect SNPs with a strong predicted impact on proteins, despite their scarcity in each population (16,307 SIFT deleterious missenses and 590 stop-gained), (ii) study, on a large scale, cis-regulations of gene expression, with ∼81% of protein-coding and 68% of long non-coding genes (TPM ≥ 1) that can be analyzed for ASE, and with ∼29% of them that were cis-regulated, and (iii) analyze population genetic using such SNPs located in expressed regions. This work shows that RNA-seq data can be used with good confidence to detect SNPs and associated GT within various populations and used them for different analyses as GTEx studies.

2.
Front Genet ; 12: 659287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306009

RESUMO

Most single-nucleotide polymorphisms (SNPs) are located in non-coding regions, but the fraction usually studied is harbored in protein-coding regions because potential impacts on proteins are relatively easy to predict by popular tools such as the Variant Effect Predictor. These tools annotate variants independently without considering the potential effect of grouped or haplotypic variations, often called "multi-nucleotide variants" (MNVs). Here, we used a large RNA-seq dataset to survey MNVs, comprising 382 chicken samples originating from 11 populations analyzed in the companion paper in which 9.5M SNPs- including 3.3M SNPs with reliable genotypes-were detected. We focused our study on in-codon MNVs and evaluate their potential mis-annotation. Using GATK HaplotypeCaller read-based phasing results, we identified 2,965 MNVs observed in at least five individuals located in 1,792 genes. We found 41.1% of them showing a novel impact when compared to the effect of their constituent SNPs analyzed separately. The biggest impact variation flux concerns the originally annotated stop-gained consequences, for which around 95% were rescued; this flux is followed by the missense consequences for which 37% were reannotated with a different amino acid. We then present in more depth the rescued stop-gained MNVs and give an illustration in the SLC27A4 gene. As previously shown in human datasets, our results in chicken demonstrate the value of haplotype-aware variant annotation, and the interest to consider MNVs in the coding region, particularly when searching for severe functional consequence such as stop-gained variants.

4.
Sci Rep ; 10(1): 20457, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235280

RESUMO

Long non-coding RNAs (LNC) regulate numerous biological processes. In contrast to human, the identification of LNC in farm species, like chicken, is still lacunar. We propose a catalogue of 52,075 chicken genes enriched in LNC ( http://www.fragencode.org/ ), built from the Ensembl reference extended using novel LNC modelled here from 364 RNA-seq and LNC from four public databases. The Ensembl reference grew from 4,643 to 30,084 LNC, of which 59% and 41% with expression ≥ 0.5 and ≥ 1 TPM respectively. Characterization of these LNC relatively to the closest protein coding genes (PCG) revealed that 79% of LNC are in intergenic regions, as in other species. Expression analysis across 25 tissues revealed an enrichment of co-expressed LNC:PCG pairs, suggesting co-regulation and/or co-function. As expected LNC were more tissue-specific than PCG (25% vs. 10%). Similarly to human, 16% of chicken LNC hosted one or more miRNA. We highlighted a new chicken LNC, hosting miR155, conserved in human, highly expressed in immune tissues like miR155, and correlated with immunity-related PCG in both species. Among LNC:PCG pairs tissue-specific in the same tissue, we revealed an enrichment of divergent pairs with the PCG coding transcription factors, as for example LHX5, HXD3 and TBX4, in both human and chicken.


Assuntos
Galinhas/genética , Biologia Computacional/métodos , Anotação de Sequência Molecular/métodos , RNA Longo não Codificante/genética , Animais , Atlas como Assunto , Proteínas Aviárias/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , Especificidade de Órgãos , Análise de Sequência de RNA , Distribuição Tecidual
5.
BMC Genomics ; 20(1): 882, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752679

RESUMO

BACKGROUND: Lipids are important for the cell and organism life since they are major components of membranes, energy reserves and are also signal molecules. The main organs for the energy synthesis and storage are the liver and adipose tissue, both in humans and in more distant species such as chicken. Long noncoding RNAs (lncRNAs) are known to be involved in many biological processes including lipid metabolism. RESULTS: In this context, this paper provides the most exhaustive list of lncRNAs involved in lipid metabolism with 60 genes identified after an in-depth analysis of the bibliography, while all "review" type articles list a total of 27 genes. These 60 lncRNAs are mainly described in human or mice and only a few of them have a precise described mode-of-action. Because these genes are still named in a non-standard way making such a study tedious, we propose a standard name for this list according to the rules dictated by the HUGO consortium. Moreover, we identified about 10% of lncRNAs which are conserved between mammals and chicken and 2% between mammals and fishes. Finally, we demonstrated that two lncRNA were wrongly considered as lncRNAs in the literature since they are 3' extensions of the closest coding gene. CONCLUSIONS: Such a lncRNAs catalogue can participate to the understanding of the lipid metabolism regulators; it can be useful to better understand the genetic regulation of some human diseases (obesity, hepatic steatosis) or traits of economic interest in livestock species (meat quality, carcass composition). We have no doubt that this first set will be rapidly enriched in coming years.


Assuntos
Metabolismo dos Lipídeos/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Galinhas/genética , Humanos , Mamíferos/genética , Camundongos , Filogenia , Terminologia como Assunto
6.
Genet Sel Evol ; 49(1): 6, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28073357

RESUMO

BACKGROUND: Improving functional annotation of the chicken genome is a key challenge in bridging the gap between genotype and phenotype. Among all transcribed regions, long noncoding RNAs (lncRNAs) are a major component of the transcriptome and its regulation, and whole-transcriptome sequencing (RNA-Seq) has greatly improved their identification and characterization. We performed an extensive profiling of the lncRNA transcriptome in the chicken liver and adipose tissue by RNA-Seq. We focused on these two tissues because of their importance in various economical traits for which energy storage and mobilization play key roles and also because of their high cell homogeneity. To predict lncRNAs, we used a recently developed tool called FEELnc, which also classifies them with respect to their distance and strand orientation to the closest protein-coding genes. Moreover, to confidently identify the genes/transcripts expressed in each tissue (a complex task for weakly expressed molecules such as lncRNAs), we probed a particularly large number of biological replicates (16 per tissue) compared to common multi-tissue studies with a larger set of tissues but less sampling. RESULTS: We predicted 2193 lncRNA genes, among which 1670 were robustly expressed across replicates in the liver and/or adipose tissue and which were classified into 1493 intergenic and 177 intragenic lncRNAs located between and within protein-coding genes, respectively. We observed similar structural features between chickens and mammals, with strong synteny conservation but without sequence conservation. As previously reported, we confirm that lncRNAs have a lower and more tissue-specific expression than mRNAs. Finally, we showed that adjacent lncRNA-mRNA genes in divergent orientation have a higher co-expression level when separated by less than 1 kb compared to more distant divergent pairs. Among these, we highlighted for the first time a novel lncRNA candidate involved in lipid metabolism, lnc_DHCR24, which is highly correlated with the DHCR24 gene that encodes a key enzyme of cholesterol biosynthesis. CONCLUSIONS: We provide a comprehensive lncRNA repertoire in the chicken liver and adipose tissue, which shows interesting patterns of co-expression between mRNAs and lncRNAs. It contributes to improving the structural and functional annotation of the chicken genome and provides a basis for further studies on energy storage and mobilization traits in the chicken.


Assuntos
Tecido Adiposo/metabolismo , Galinhas/genética , Fígado/metabolismo , RNA Longo não Codificante/genética , Transcriptoma , Animais , Galinhas/metabolismo , Sequência Conservada , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma , Genótipo , Humanos , Metabolismo dos Lipídeos/genética , Fases de Leitura Aberta , Especificidade de Órgãos , Fenótipo , Locos de Características Quantitativas , RNA Antissenso , RNA Longo não Codificante/química , RNA Mensageiro/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-27442111

RESUMO

Global transcriptome analysis of chicken whole blood to discover biomarkers of different phenotypes or physiological disorders has never been investigated so far. Whole blood provides significant advantages, allowing large scale and non-invasive sampling. However, generation of gene expression data from the blood of non-mammalian species remains a challenge, notably due to the nucleated red blood cells, hindering the use of well-established protocols. The aim of this study was to analyze the relevance of using whole blood cells (WB) to find biomarkers, instead of Peripheral Blood Mononuclear Cells (PBMC), usually chosen for immune challenges. RNA sources from WB and PBMC was characterized by microarray analysis. Our results show that the quality and quantity of RNA obtained from WB was suitable for further analyses, although the quality was lower than that from PBMC. The transcriptome profiling comparison revealed that the majority of genes were expressed in both WB and PBMC. Hemoglobin subunits were the major transcripts in WB, whereas the most enriched biological process was related to protein catabolic process. Most of the over-represented transcripts in PBMC were implicated in functions specific to thrombocytes, like coagulation and platelet activation, probably due to the large proportion of this nucleated cell type in chicken PBMC. Functions related to B and T cells and to other immune functions were also enriched in the PBMC subset. We conclude that WB is more suitable for large scale immunity oriented studies and other biological processes that have been poorly investigated so far.


Assuntos
Biomarcadores/sangue , Proteínas Sanguíneas/genética , Galinhas/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucócitos Mononucleares/metabolismo , Transcriptoma/genética , Animais , Células Cultivadas , Galinhas/crescimento & desenvolvimento , Biologia Computacional , Genoma/genética , Masculino , Anotação de Sequência Molecular , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Genome Biol Evol ; 7(5): 1332-48, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25912043

RESUMO

Free fatty acid receptors (FFAR) belong to a family of five G-protein coupled receptors that are involved in the regulation of lipid metabolism, so that their loss of function increases the risk of obesity. The aim of this study was to determine the expansion of genes encoding paralogs of FFAR2 in the chicken, considered as a model organism for developmental biology and biomedical research. By estimating the gene copy number using quantitative polymerase chain reaction, genomic DNA resequencing, and RNA sequencing data, we showed the existence of 23 ± 1.5 genes encoding FFAR2 paralogs in the chicken genome. The FFAR2 paralogs shared an identity from 87.2% up to 99%. Extensive gene conversion was responsible for this high degree of sequence similarities between these genes, and this concerned especially the four amino acids known to be critical for ligand binding. Moreover, elevated nonsynonymous/synonymous substitution ratios on some amino acids within or in close-vicinity of the ligand-binding groove suggest that positive selection may have reduced the effective rate of gene conversion in this region, thus contributing to diversify the function of some FFAR2 paralogs. All the FFAR2 paralogs were located on a microchromosome in a same linkage group. FFAR2 genes were expressed in different tissues and cells such as spleen, peripheral blood mononuclear cells, abdominal adipose tissue, intestine, and lung, with the highest rate of expression in testis. Further investigations are needed to determine whether these chicken-specific events along evolution are the consequence of domestication and may play a role in regulating lipid metabolism in this species.


Assuntos
Proteínas Aviárias/genética , Galinhas/genética , Duplicação Gênica , Receptores Acoplados a Proteínas G/genética , Animais , Proteínas Aviárias/química , Proteínas Aviárias/metabolismo , Evolução Molecular , Feminino , Conversão Gênica , Genoma , Masculino , Família Multigênica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Suínos/genética , Distribuição Tecidual
9.
G3 (Bethesda) ; 5(4): 517-29, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25653314

RESUMO

Very few causal genes have been identified by quantitative trait loci (QTL) mapping because of the large size of QTL, and most of them were identified thanks to functional links already known with the targeted phenotype. Here, we propose to combine selection signature detection, coding SNP annotation, and cis-expression QTL analyses to identify potential causal genes underlying QTL identified in divergent line designs. As a model, we chose experimental chicken lines divergently selected for only one trait, the abdominal fat weight, in which several QTL were previously mapped. Using new haplotype-based statistics exploiting the very high SNP density generated through whole-genome resequencing, we found 129 significant selective sweeps. Most of the QTL colocalized with at least one sweep, which markedly narrowed candidate region size. Some of those sweeps contained only one gene, therefore making them strong positional causal candidates with no presupposed function. We then focused on two of these QTL/sweeps. The absence of nonsynonymous SNPs in their coding regions strongly suggests the existence of causal mutations acting in cis on their expression, confirmed by cis-eQTL identification using either allele-specific expression or genetic mapping analyses. Additional expression analyses of those two genes in the chicken and mice contrasted for adiposity reinforces their link with this phenotype. This study shows for the first time the interest of combining selective sweeps mapping, coding SNP annotation and cis-eQTL analyses for identifying causative genes for a complex trait, in the context of divergent lines selected for this specific trait. Moreover, it highlights two genes, JAG2 and PARK2, as new potential negative and positive key regulators of adiposity in chicken and mice.


Assuntos
Adiposidade/genética , Proteínas de Membrana/genética , Locos de Características Quantitativas , Ubiquitina-Proteína Ligases/genética , Tecido Adiposo Branco/metabolismo , Alelos , Animais , Linhagem Celular , Galinhas , Mapeamento Cromossômico , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Proteína Jagged-2 , Proteínas de Membrana/metabolismo , Camundongos , Anotação de Sequência Molecular , Miosinas/genética , Miosinas/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
10.
PLoS One ; 9(10): e111299, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25333370

RESUMO

In this study, we propose an approach aiming at fine-mapping adiposity QTL in chicken, integrating whole genome re-sequencing data. First, two QTL regions for adiposity were identified by performing a classical linkage analysis on 1362 offspring in 11 sire families obtained by crossing two meat-type chicken lines divergently selected for abdominal fat weight. Those regions, located on chromosome 7 and 19, contained a total of 77 and 84 genes, respectively. Then, SNPs and indels in these regions were identified by re-sequencing sires. Considering issues related to polymorphism annotations for regulatory regions, we focused on the 120 and 104 polymorphisms having an impact on protein sequence, and located in coding regions of 35 and 42 genes situated in the two QTL regions. Subsequently, a filter was applied on SNPs considering their potential impact on the protein function based on conservation criteria. For the two regions, we identified 42 and 34 functional polymorphisms carried by 18 and 24 genes, and likely to deeply impact protein, including 3 coding indels and 4 nonsense SNPs. Finally, using gene functional annotation, a short list of 17 and 4 polymorphisms in 6 and 4 functional genes has been defined. Even if we cannot exclude that the causal polymorphisms may be located in regulatory regions, this strategy gives a complete overview of the candidate polymorphisms in coding regions and prioritize them on conservation- and functional-based arguments.


Assuntos
Adiposidade/genética , Sequenciamento de Nucleotídeos em Larga Escala , Obesidade/genética , Locos de Características Quantitativas/genética , Animais , Galinhas , Mapeamento Cromossômico , Estudos de Associação Genética , Ligação Genética , Genótipo , Mutação INDEL , Anotação de Sequência Molecular , Obesidade/patologia , Polimorfismo de Nucleotídeo Único
11.
BMC Genomics ; 12: 567, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22103296

RESUMO

BACKGROUND: Integrative genomics approaches that combine genotyping and transcriptome profiling in segregating populations have been developed to dissect complex traits. The most common approach is to identify genes whose eQTL colocalize with QTL of interest, providing new functional hypothesis about the causative mutation. Another approach includes defining subtypes for a complex trait using transcriptome profiles and then performing QTL mapping using some of these subtypes. This approach can refine some QTL and reveal new ones.In this paper we introduce Factor Analysis for Multiple Testing (FAMT) to define subtypes more accurately and reveal interaction between QTL affecting the same trait. The data used concern hepatic transcriptome profiles for 45 half sib male chicken of a sire known to be heterozygous for a QTL affecting abdominal fatness (AF) on chromosome 5 distal region around 168 cM. RESULTS: Using this methodology which accounts for hidden dependence structure among phenotypes, we identified 688 genes that are significantly correlated to the AF trait and we distinguished 5 subtypes for AF trait, which are not observed with gene lists obtained by classical approaches. After exclusion of one of the two lean bird subtypes, linkage analysis revealed a previously undetected QTL on chromosome 5 around 100 cM. Interestingly, the animals of this subtype presented the same q paternal haplotype at the 168 cM QTL. This result strongly suggests that the two QTL are in interaction. In other words, the "q configuration" at the 168 cM QTL could hide the QTL existence in the proximal region at 100 cM. We further show that the proximal QTL interacts with the previous one detected on the chromosome 5 distal region. CONCLUSION: Our results demonstrate that stratifying genetic population by molecular phenotypes followed by QTL analysis on various subtypes can lead to identification of novel and interacting QTL.


Assuntos
Adiposidade/genética , Galinhas/genética , Perfilação da Expressão Gênica , Locos de Características Quantitativas , Transcriptoma , Animais , Masculino
12.
BMC Genomics ; 10: 575, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19954542

RESUMO

BACKGROUND: Although many QTL for various traits have been mapped in livestock, location confidence intervals remain wide that makes difficult the identification of causative mutations. The aim of this study was to test the contribution of microarray data to QTL detection in livestock species. Three different but complementary approaches are proposed to improve characterization of a chicken QTL region for abdominal fatness (AF) previously detected on chromosome 5 (GGA5). RESULTS: Hepatic transcriptome profiles for 45 offspring of a sire known to be heterozygous for the distal GGA5 AF QTL were obtained using a 20 K chicken oligochip. mRNA levels of 660 genes were correlated with the AF trait. The first approach was to dissect the AF phenotype by identifying animal subgroups according to their 660 transcript profiles. Linkage analysis using some of these subgroups revealed another QTL in the middle of GGA5 and increased the significance of the distal GGA5 AF QTL, thereby refining its localization. The second approach targeted the genes correlated with the AF trait and regulated by the GGA5 AF QTL region. Five of the 660 genes were considered as being controlled either by the AF QTL mutation itself or by a mutation close to it; one having a function related to lipid metabolism (HMGCS1). In addition, a QTL analysis with a multiple trait model combining this 5 gene-set and AF allowed us to refine the QTL region. The third approach was to use these 5 transcriptome profiles to predict the paternal Q versus q AF QTL mutation for each recombinant offspring and then refine the localization of the QTL from 31 cM (100 genes) at a most probable location confidence interval of 7 cM (12 genes) after determining the recombination breakpoints, an interval consistent with the reductions obtained by the two other approaches. CONCLUSION: The results showed the feasibility and efficacy of the three strategies used, the first revealing a QTL undetected using the whole population, the second providing functional information about a QTL region through genes related to the trait and controlled by this region (HMGCS1), the third could drastically refine a QTL region.


Assuntos
Galinhas/genética , Cromossomos/genética , Perfilação da Expressão Gênica , Locos de Características Quantitativas , Gordura Abdominal/metabolismo , Animais , Feminino , Humanos , Fígado/metabolismo , Masculino , Modelos Genéticos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
BMC Genomics ; 9: 611, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19091074

RESUMO

BACKGROUND: Starvation triggers a complex array of adaptative metabolic responses including energy-metabolic responses, a process which must imply tissue specific alterations in gene expression and in which the liver plays a central role. The present study aimed to describe the evolution of global gene expression profiles in liver of 4-week-old male chickens during a 48 h fasting period using a chicken 20 K oligoarray. RESULTS: A large number of genes were modulated by fasting (3532 genes with a pvalue corrected by Benjamini-Hochberg < 0.01); 2062 showed an amplitude of variation higher than +/- 40% among those, 1162 presented an human ortholog, allowing to collect functional information. Notably more genes were down-regulated than up-regulated, whatever the duration of fasting (16 h or 48 h). The number of genes differentially expressed after 48 h of fasting was 3.5-fold higher than after 16 h of fasting. Four clusters of co-expressed genes were identified by a hierarchical cluster analysis. Gene Ontology, KEGG and Ingenuity databases were then used to identify the metabolic processes associated to each cluster. After 16 h of fasting, genes involved in ketogenesis, gluconeogenesis and mitochondrial or peroxisomal fatty acid beta-oxidation, were up-regulated (cluster-1) whereas genes involved in fatty acid and cholesterol synthesis were down-regulated (cluster-2). For all genes tested, the microarray data was confirmed by quantitative RT-PCR. Most genes were altered by fasting as already reported in mammals. A notable exception was the HMG-CoA synthase 1 gene, which was up-regulated following 16 and 48 h of fasting while the other genes involved in cholesterol metabolism were down-regulated as reported in mammalian studies. We further focused on genes not represented on the microarray and candidates for the regulation of the target genes belonging to cluster-1 and -2 and involved in lipid metabolism. Data are provided concerning PPARa, SREBP1, SREBP2, NR1H3 transcription factors and two desaturases (FADS1, FADS2). CONCLUSION: This study evidences numerous genes altered by starvation in chickens and suggests a global repression of cellular activity in response to this stressor. The central role of lipid and acetyl-CoA metabolisms and its regulation at transcriptional level are confirmed in chicken liver in response to short-term fasting. Interesting expression modulations were observed for NR1H3, FADS1 and FADS2 genes. Further studies are needed to precise their role in the complex regulatory network controlling lipid metabolism.


Assuntos
Galinhas/genética , Privação de Alimentos , Perfilação da Expressão Gênica , Fígado/metabolismo , Animais , Galinhas/metabolismo , Análise por Conglomerados , Dessaturase de Ácido Graxo Delta-5 , Metabolismo Energético/genética , Expressão Gênica , Metabolismo dos Lipídeos/genética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Transcrição Gênica
14.
J Agric Food Chem ; 54(11): 3901-10, 2006 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-16719513

RESUMO

Hen egg white is an original biological fluid in which major proteins have been widely studied, unlike the minor components. In this study, two-dimensional electrophoresis associated with mass spectrometry enabled the separation of 69 protein spots and their matching with major proteins, which were already known, and with minor proteins. Sixteen proteins were identified, and among them, two had never been previously detected in hen egg white, i.e., Tenp, a protein with strong homology with a bacterial permeability-increasing protein family (BPI), and VMO-1, an outer layer vitelline membrane protein. Thirteen proteins present a very wide polymorphism (ovotransferrin, ovomucoid, clusterin, etc.), some of them up to nine isoforms (ovoinhibitor). Eleven functional protein families were identified (serpin, transferrin, protease inhibitors Kazal, glycosyl hydrolases, lipocalin, bactericidal permeability-increasing protein, clusterin, UPAR/CD59/Ly6/ snake neurotoxin, cysteine protease inhibitor, VMO-1, and folate receptor families). These various biological functions could be interesting for further valorizations. In addition, three spots remain unidentified, probably because these proteins are not yet indexed in the international protein databanks.


Assuntos
Clara de Ovo/análise , Proteínas/análise , Animais , Peptídeos Catiônicos Antimicrobianos , Proteínas Sanguíneas/análise , Galinhas , Proteínas do Ovo/análise , Eletroforese em Gel Bidimensional , Feminino , Espectrometria de Massas , Proteínas de Membrana/análise
15.
J Agric Food Chem ; 53(6): 2158-63, 2005 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-15769150

RESUMO

Ovalbumin gene Y has been known as a member of the ovalbumin gene family since 1982, when its encoding gene was sequenced. In the present study, ovalbumin gene Y has been demonstrated as a new minor protein of hen egg white. This protein has been isolated by isoelectrofocalization and two-dimensional polyacrylamide gel electrophoresis and has been characterized using peptide mass fingerprinting. The concentration ratio of ovalbumin gene Y:ovalbumin is about 13:100. Unlike ovalbumin, ovalbumin gene Y is not phosphorylated, but like ovalbumin, this protein is glycosylated. Ovalbumin gene Y exists as a mixture of three molecular species, which differ in their isoelectric points. The polymorphism of this protein cannot be explained by various glycosylation levels.


Assuntos
Galinhas , Proteínas do Ovo/análise , Clara de Ovo/análise , Ovalbumina/análise , Animais , Proteínas do Ovo/química , Proteínas do Ovo/genética , Eletroforese em Gel Bidimensional , Glicosilação , Focalização Isoelétrica , Ovalbumina/química , Ovalbumina/genética , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos , Análise de Sequência de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...