Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(21): 2217-2234.e8, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37852253

RESUMO

Despite their burden, most congenital defects remain poorly understood, due to lack of knowledge of embryological mechanisms. Here, we identify Greb1l mutants as a mouse model of crisscross heart. Based on 3D quantifications of shape changes, we demonstrate that torsion of the atrioventricular canal occurs together with supero-inferior ventricles at E10.5, after heart looping. Mutants phenocopy partial deficiency in retinoic acid signaling, which reflect overlapping pathways in cardiac precursors. Spatiotemporal gene mapping and cross-correlated transcriptomic analyses further reveal the role of Greb1l in maintaining a pool of dorsal pericardial wall precursor cells during heart tube elongation, likely by controlling ribosome biogenesis and cell differentiation. Consequently, we observe growth arrest and malposition of the outflow tract, which are predictive of abnormal tube remodeling in mutants. Our work on a rare cardiac malformation opens novel perspectives on the origin of a broader spectrum of congenital defects associated with GREB1L in humans.


Assuntos
Coração Entrecruzado , Humanos , Animais , Camundongos , Morfogênese/genética , Coração , Ventrículos do Coração , Células-Tronco
2.
Dev Cell ; 55(4): 413-431.e6, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33171097

RESUMO

The secreted factor Nodal, known as a major left determinant, is associated with severe heart defects. Yet, it has been unclear how it regulates asymmetric morphogenesis such as heart looping, which align cardiac chambers to establish the double blood circulation. Here, we report that Nodal is transiently active in precursors of the mouse heart tube poles, before looping. In conditional mutants, we show that Nodal is not required to initiate asymmetric morphogenesis. We provide evidence of a heart-specific random generator of asymmetry that is independent of Nodal. Using 3D quantifications and simulations, we demonstrate that Nodal functions as a bias of this mechanism: it is required to amplify and coordinate opposed left-right asymmetries at the heart tube poles, thus generating a robust helical shape. We identify downstream effectors of Nodal signaling, regulating asymmetries in cell proliferation, differentiation, and extracellular matrix composition. Our study uncovers how Nodal regulates asymmetric organogenesis.


Assuntos
Padronização Corporal , Coração/embriologia , Proteína Nodal/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Proliferação de Células , Simulação por Computador , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Matriz Extracelular/metabolismo , Cardiopatias Congênitas/metabolismo , Mesoderma/metabolismo , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Transgenes
3.
Dis Model Mech ; 12(7)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31208960

RESUMO

Laterality defects are developmental disorders resulting from aberrant left/right patterning. In the most severe cases, such as in heterotaxy, they are associated with complex malformations of the heart. Advances in understanding the underlying physiopathological mechanisms have been hindered by the lack of a standardised and exhaustive procedure in mouse models for phenotyping left/right asymmetries of all visceral organs. Here, we have developed a multimodality imaging pipeline, which combines non-invasive micro-ultrasound imaging, micro-computed tomography (micro-CT) and high-resolution episcopic microscopy (HREM) to acquire 3D images at multiple stages of development and at multiple scales. On the basis of the position in the uterine horns, we track in a single individual, the progression of organ asymmetry, the situs of all visceral organs in the thoracic or abdominal environment, and the fine anatomical left/right asymmetries of cardiac segments. We provide reference anatomical images and organ reconstructions in the mouse, and discuss differences with humans. This standardised pipeline, which we validated in a mouse model of heterotaxy, offers a fast and easy-to-implement framework. The extensive 3D phenotyping of organ asymmetry in the mouse uses the clinical nomenclature for direct comparison with patient phenotypes. It is compatible with automated and quantitative image analyses, which is essential to compare mutant phenotypes with incomplete penetrance and to gain mechanistic insight into laterality defects.


Assuntos
Padronização Corporal , Cardiopatias Congênitas/diagnóstico por imagem , Fenótipo , Animais , Modelos Animais de Doenças , Feto/diagnóstico por imagem , Coração/diagnóstico por imagem , Coração/embriologia , Imageamento Tridimensional , Camundongos , Ultrassonografia , Microtomografia por Raio-X
4.
Development ; 145(22)2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467108

RESUMO

Extensive studies have shown how bilateral symmetry of the vertebrate embryo is broken during early development, resulting in a molecular left-right bias in the mesoderm. However, how this early asymmetry drives the asymmetric morphogenesis of visceral organs remains poorly understood. The heart provides a striking model of left-right asymmetric morphogenesis, undergoing rightward looping to shape an initially linear heart tube and align cardiac chambers. Importantly, abnormal left-right patterning is associated with severe congenital heart defects, as exemplified in heterotaxy syndrome. Here, we compare the mechanisms underlying the rightward looping of the heart tube in fish, chick and mouse embryos. We propose that heart looping is not only a question of direction, but also one of fine-tuning shape. This is discussed in the context of evolutionary and clinical perspectives.


Assuntos
Padronização Corporal , Cardiopatias/embriologia , Coração/embriologia , Animais , Humanos , Modelos Biológicos , Morfogênese , Vertebrados/embriologia
5.
Elife ; 62017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29179813

RESUMO

How left-right patterning drives asymmetric morphogenesis is unclear. Here, we have quantified shape changes during mouse heart looping, from 3D reconstructions by HREM. In combination with cell labelling and computer simulations, we propose a novel model of heart looping. Buckling, when the cardiac tube grows between fixed poles, is modulated by the progressive breakdown of the dorsal mesocardium. We have identified sequential left-right asymmetries at the poles, which bias the buckling in opposite directions, thus leading to a helical shape. Our predictive model is useful to explore the parameter space generating shape variations. The role of the dorsal mesocardium was validated in Shh-/- mutants, which recapitulate heart shape changes expected from a persistent dorsal mesocardium. Our computer and quantitative tools provide novel insight into the mechanism of heart looping and the contribution of different factors, beyond the simple description of looping direction. This is relevant to congenital heart defects.


Assuntos
Coração/embriologia , Morfogênese , Animais , Simulação por Computador , Imageamento Tridimensional , Camundongos , Microscopia
6.
Am J Hum Genet ; 101(5): 803-814, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100091

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute a major cause of chronic kidney disease in children and 20% of prenatally detected anomalies. CAKUT encompass a spectrum of developmental kidney defects, including renal agenesis, hypoplasia, and cystic and non-cystic dysplasia. More than 50 genes have been reported as mutated in CAKUT-affected case subjects. However, the pathophysiological mechanisms leading to bilateral kidney agenesis (BKA) remain largely elusive. Whole-exome or targeted exome sequencing of 183 unrelated familial and/or severe CAKUT-affected case subjects, including 54 fetuses with BKA, led to the identification of 16 heterozygous variants in GREB1L (growth regulation by estrogen in breast cancer 1-like), a gene reported as a target of retinoic acid signaling. Four loss-of-function and 12 damaging missense variants, 14 being absent from GnomAD, were identified. Twelve of them were present in familial or simplex BKA-affected case subjects. Female BKA-affected fetuses also displayed uterus agenesis. We demonstrated a significant association between GREB1L variants and BKA. By in situ hybridization, we showed expression of Greb1l in the nephrogenic zone in developing mouse kidney. We generated a Greb1l knock-out mouse model by CRISPR-Cas9. Analysis at E13.5 revealed lack of kidneys and genital tract anomalies in male and female Greb1l-/- embryos and a slight decrease in ureteric bud branching in Greb1l+/- embryos. We showed that Greb1l invalidation in mIMCD3 cells affected tubulomorphogenesis in 3D-collagen culture, a phenotype rescued by expression of the wild-type human protein. This demonstrates that GREB1L plays a major role in early metanephros and genital development in mice and humans.


Assuntos
Anormalidades Congênitas/genética , Nefropatias/congênito , Rim/anormalidades , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Animais , Criança , Exoma/genética , Feminino , Feto/anormalidades , Heterozigoto , Humanos , Nefropatias/genética , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/genética
7.
Development ; 144(24): 4704-4719, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29158444

RESUMO

Kidney development depends crucially on proper ureteric bud branching giving rise to the entire collecting duct system. The transcription factor HNF1B is required for the early steps of ureteric bud branching, yet the molecular and cellular events regulated by HNF1B are poorly understood. We report that specific removal of Hnf1b from the ureteric bud leads to defective cell-cell contacts and apicobasal polarity during the early branching events. High-resolution ex vivo imaging combined with a membranous fluorescent reporter strategy show decreased mutant cell rearrangements during mitosis-associated cell dispersal and severe epithelial disorganization. Molecular analysis reveals downregulation of Gdnf-Ret pathway components and suggests that HNF1B acts both upstream and downstream of Ret signaling by directly regulating Gfra1 and Etv5 Subsequently, Hnf1b deletion leads to massively mispatterned ureteric tree network, defective collecting duct differentiation and disrupted tissue architecture, which leads to cystogenesis. Consistently, mRNA-seq analysis shows that the most impacted genes encode intrinsic cell-membrane components with transporter activity. Our study uncovers a fundamental and recurring role of HNF1B in epithelial organization during early ureteric bud branching and in further patterning and differentiation of the collecting duct system in mouse.


Assuntos
Polaridade Celular/genética , Fator 1-beta Nuclear de Hepatócito/genética , Túbulos Renais Coletores/embriologia , Ureter/embriologia , Anormalidades Urogenitais/embriologia , Anormalidades Urogenitais/genética , Animais , Adesão Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 1-beta Nuclear de Hepatócito/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Técnicas de Cultura de Órgãos , Fator de Transcrição PAX2/biossíntese , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases
8.
Development ; 144(6): 1113-1117, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28219945

RESUMO

Tissue, organ and organoid cultures provide suitable models for developmental studies, but our understanding of how the organs are assembled at the single-cell level still remains unclear. We describe here a novel fixed z-direction (FiZD) culture setup that permits high-resolution confocal imaging of organoids and embryonic tissues. In a FiZD culture a permeable membrane compresses the tissues onto a glass coverslip and the spacers adjust the thickness, enabling the tissue to grow for up to 12 days. Thus, the kidney rudiment and the organoids can adjust to the limited z-directional space and yet advance the process of kidney morphogenesis, enabling long-term time-lapse and high-resolution confocal imaging. As the data quality achieved was sufficient for computer-assisted cell segmentation and analysis, the method can be used for studying morphogenesis ex vivo at the level of the single constituent cells of a complex mammalian organogenesis model system.


Assuntos
Rim/embriologia , Microscopia Confocal/métodos , Organoides/embriologia , Imagem com Lapso de Tempo/métodos , Técnicas de Cultura de Tecidos/métodos , Animais , Imageamento Tridimensional , Camundongos , Morfogênese
9.
Cells ; 4(3): 483-99, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26378582

RESUMO

The nephron is the basic structural and functional unit of the vertebrate kidney. To ensure kidney functions, the nephrons possess a highly segmental organization where each segment is specialized for the secretion and reabsorption of particular solutes. During embryogenesis, nephron progenitors undergo a mesenchymal-to-epithelial transition (MET) and acquire different segment-specific cell fates along the proximo-distal axis of the nephron. Even if the morphological changes occurring during nephrogenesis are characterized, the regulatory networks driving nephron segmentation are still poorly understood. Interestingly, several studies have shown that the pronephric nephrons in Xenopus and zebrafish are segmented in a similar fashion as the mouse metanephric nephrons. Here we review functional and molecular aspects of nephron segmentation with a particular interest on the signaling molecules and transcription factors recently implicated in kidney development in these three different vertebrate model organisms. A complete understanding of the mechanisms underlying nephrogenesis in different model organisms will provide novel insights on the etiology of several human renal diseases.

10.
Development ; 140(4): 873-85, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23362348

RESUMO

The nephron is a highly specialised segmented structure that provides essential filtration and resorption renal functions. It arises by formation of a polarised renal vesicle that differentiates into a comma-shaped body and then a regionalised S-shaped body (SSB), with the main prospective segments mapped to discrete domains. The regulatory circuits involved in initial nephron patterning are poorly understood. We report here that HNF1B, a transcription factor known to be involved in ureteric bud branching and initiation of nephrogenesis, has an additional role in segment fate acquisition. Hnf1b conditional inactivation in murine nephron progenitors results in rudimentary nephrons comprising a glomerulus connected to the collecting system by a short tubule displaying distal fates. Renal vesicles develop and polarise normally but fail to progress to correctly patterned SSBs. Major defects are evident at late SSBs, with altered morphology, reduction of a proximo-medial subdomain and increased apoptosis. This is preceded by strong downregulation of the Notch pathway components Lfng, Dll1 and Jag1 and the Irx1/2 factors, which are potential regulators of proximal and Henle's loop segment fates. Moreover, HNF1B is recruited to the regulatory sequences of most of these genes. Overexpression of a HNF1B dominant-negative construct in Xenopus embryos causes downregulation specifically of proximal and intermediate pronephric segment markers. These results show that HNF1B is required for the acquisition of a proximo-intermediate segment fate in vertebrates, thus uncovering a previously unappreciated function of a novel SSB subcompartment in global nephron segmentation and further differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 1-beta Nuclear de Hepatócito/metabolismo , Néfrons/embriologia , Organogênese/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas Histológicas , Proteínas de Homeodomínio/metabolismo , Imageamento Tridimensional , Imuno-Histoquímica , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Camundongos , Néfrons/metabolismo , Organogênese/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tomografia Óptica , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...