Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 48: 197-204, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579914

RESUMO

Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14±0.015% to 85.34±0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12h. The optimized microspheres formulation showed E.E. of 84.87±0.005 with small error value (1.39). The low magnitudes of error and the significant value of R(2) in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects.


Assuntos
Preparações de Ação Retardada/química , Diclofenaco/análogos & derivados , Microesferas , Varredura Diferencial de Calorimetria , Diclofenaco/química , Diclofenaco/farmacocinética , Microscopia Eletrônica de Varredura , Modelos Teóricos , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
Mater Sci Eng C Mater Biol Appl ; 36: 320-8, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24433918

RESUMO

The purpose of this study was to prepare polymeric microspheres containing aceclofenac by single emulsion [oil-in-water (o/w)] solvent evaporation method. Two biocompatible polymers, ethylcellulose, and Eudragit® RS100 were used in combination. Seven processing factors were investigated by Plackett-Burman design (PBD) in order to enhance the encapsulation efficiency of the microspheres. A Plackett-Burman design was employed by using the Design-Expert® software (Version-8.0.7.1). The resultant microspheres were characterized for their size, morphology, encapsulation efficiency, and drug release. Imaging of particles was performed by field emission scanning electron microscopy. Interaction between the drug and polymers were investigated by Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffractometry (XRPD). Graphical and mathematical analyses of the design showed that Eudragit® RS100, and polyvinyl alcohol (PVA) were significant negative effect on the encapsulation efficiency and identified as the significant factor determining the encapsulation efficiency of the microspheres. The low magnitudes of error and the significant values of R(2) in the present investigation prove the high prognostic ability of the design. The microspheres showed high encapsulation efficiency (70.15% to 83.82%). The microspheres were found to be discrete, oval with smooth surface. The FTIR analysis confirmed the compatibility of aceclofenac with the polymers. The XRPD revealed the dispersion of drug within microspheres formulation. Perfect prolonged drug release profile over 12h was achieved by a combination of ethylcellulose, and Eudragit® RS100 polymers. In conclusion, polymeric microspheres containing aceclofenac can be successfully prepared using the technique of experimental design, and these results helped in finding the optimum formulation variables for encapsulation efficiency of microspheres.


Assuntos
Diclofenaco/análogos & derivados , Microesferas , Análise de Variância , Química Farmacêutica , Diclofenaco/química , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Estatística como Assunto , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...