Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 22: 145-157, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30581919

RESUMO

Data in this article presents aroma volatiles and fatty acids composition of mesocarp specific malady namely spongy tissue disorder in Mangifera indica cv. Alphonso. Quantitative changes in various aroma volatile compound classes as well as saturated and unsaturated fatty acids in spongy tissue vis-à-vis healthy mesocarp have been analyzed throughout the development of the disorder. Statistical data analysis correlates the dynamic changes in the aroma volatiles composition to that of the modulation in the fatty acids profile.

2.
Sci Rep ; 7(1): 8711, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821734

RESUMO

Alphonso is known as the "King of mangos" due to its unique flavor, attractive color, low fiber pulp and long shelf life. We analyzed the transcriptome of Alphonso mango through Illumina sequencing from seven stages of fruit development and ripening as well as flower. Total transcriptome data from these stages ranged between 65 and 143 Mb. Importantly, 20,755 unique transcripts were annotated and 4,611 were assigned enzyme commission numbers, which encoded 142 biological pathways. These included ethylene and flavor related secondary metabolite biosynthesis pathways, as well as those involved in metabolism of starch, sucrose, amino acids and fatty acids. Differential regulation (p-value ≤ 0.05) of thousands of transcripts was evident in various stages of fruit development and ripening. Novel transcripts for biosynthesis of mono-terpenes, sesqui-terpenes, di-terpenes, lactones and furanones involved in flavor formation were identified. Large number of transcripts encoding cell wall modifying enzymes was found to be steady in their expression, while few were differentially regulated through these stages. Novel 79 transcripts of inhibitors of cell wall modifying enzymes were simultaneously detected throughout Alphonso fruit development and ripening, suggesting controlled activity of these enzymes involved in fruit softening.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Mangifera/crescimento & desenvolvimento , Mangifera/genética , Odorantes , Transcrição Gênica , Parede Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Flores/genética , Frutas/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Glicosídeo Hidrolases/metabolismo , Mangifera/efeitos dos fármacos , Mangifera/enzimologia , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/genética
3.
Phytochemistry ; 138: 65-75, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28291596

RESUMO

Uniqueness and diversity of mango flavour across various cultivars are well known. Among various flavour metabolites lactones form an important class of aroma volatiles in certain mango varieties due to their ripening specific appearance and lower odour detection threshold. In spite of their biological and biochemical importance, lactone biosynthetic pathway in plants remains elusive. Present study encompasses quantitative real-time analysis of 9-lipoxygenase (Mi9LOX), epoxide hydrolase 2 (MiEH2), peroxygenase, hydroperoxide lyase and acyl-CoA-oxidase genes during various developmental and ripening stages in fruit of Alphonso, Pairi and Kent cultivars with high, low and no lactone content and explains their variable lactone content. Study also covers isolation, recombinant protein characterization and transient over-expression of Mi9LOX and MiEH2 genes in mango fruits. Recombinant Mi9LOX utilized linoleic and linolenic acids, while MiEH2 utilized aromatic and fatty acid epoxides as their respective substrates depicting their role in fatty acid metabolism. Significant increase in concentration of δ-valerolactone and δ-decalactone upon Mi9LOX over-expression and that of δ-valerolactone, γ-hexalactone and δ-hexalactone upon MiEH2 over-expression further suggested probable involvement of these genes in lactone biosynthesis in mango.


Assuntos
Epóxido Hidrolases/genética , Lactonas/química , Lipoxigenase/genética , Mangifera/enzimologia , Proteínas de Plantas/genética , Aldeído Liases/química , Sistema Enzimático do Citocromo P-450/química , Ácidos Graxos , Frutas/química , Mangifera/genética , Oxigenases de Função Mista/química , Pironas/química
4.
J Sci Food Agric ; 97(5): 1624-1633, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27433929

RESUMO

BACKGROUND: Ripening-associated softening is one of the important attributes that largely determines the shelf-life of mango (Mangifera indica Linn.) fruits. To reveal the effect of pre-climacteric ethylene treatment on ripening-related softening of Alphonso mango, ethylene treatment was given to mature, raw Alphonso fruits. Changes in the pool of reducing and non-reducing sugars, enzymatic activity of three glycosidases: ß-d-galactosidase, α-d-mannosidase and ß-d-glucosidase and their relative transcript abundance were analysed for control and ethylene treated fruits during ripening. RESULTS: Early activity of all the three glycosidases and accelerated accumulation of reducing and non-reducing sugars on ethylene treatment was evident. ß-d-Galactosidase showed the highest activity among three glycosidases in control fruits and marked increase in activity upon ethylene treatment. This was confirmed by the histochemical assay of its activity in control and ethylene treated ripe fruits. Relative transcript abundance revealed high transcript levels of ß-d-galactosidase in control fruits. Ethylene-treated fruits showed early and remarkable increase in the ß-d-galactosidase transcripts while α-d-mannosidase transcript variants displayed early accumulation. CONCLUSION: The findings suggest reduction in the shelf-life of Alphonso mango upon pre-climacteric ethylene treatment, a significant role of ß-d-galactosidase and α-d-mannosidase in the ripening related softening of Alphonso fruits and transcriptional regulation of their expression by ethylene. © 2016 Society of Chemical Industry.


Assuntos
Etilenos/farmacologia , Frutas/química , Glicosídeo Hidrolases/metabolismo , Mangifera/química , Carboidratos/análise , Manipulação de Alimentos/métodos , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Mangifera/efeitos dos fármacos , Mangifera/crescimento & desenvolvimento
5.
Data Brief ; 9: 480-491, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27722190

RESUMO

Data in this article presents fatty acid composition of three mango cultivars; Alphonso, Pairi and Kent through fruit development and ripening. Change in the ω-6 and ω-3 fatty acids level during mango fruit development and ripening is depicted. Also, data on aroma volatile 'lactones' composition from pulp and skin tissues of these cultivars at their ripe stage, respectively is provided. Statistical data is also shown, which correlates modulation in lactone content with that of fatty acid composition and content during fruit development and ripening in all the three mango cultivars.

6.
Mol Biotechnol ; 58(5): 340-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27039187

RESUMO

Flavour of ripe Alphonso mango is invariably dominated by the de novo appearance of lactones and furanones during ripening. Of these, furanones comprising furaneol (4-hydroxy-2,5-dimethyl-3(2H)-furanone) and mesifuran (2,5-dimethyl-4-methoxy-3(2H)-furanone) are of particular importance due to their sweet, fruity caramel-like flavour characters and low odour detection thresholds. We isolated a 1056 bp complete open reading frame of a cDNA encoding S-adenosyl-L-methionine-dependent O-methyltransferase from Alphonso mango. The recombinantly expressed enzyme, MiOMTS showed substrate specificity towards furaneol and protocatechuic aldehyde synthesizing mesifuran and vanillin, respectively, in an in vitro assay reaction. A semi-quantitative PCR analysis showed fruit-specific expression of MiOMTS transcripts. Quantitative real-time PCR displayed ripening-related expression pattern of MiOMTS in both pulp and skin of Alphonso mango. Also, early and significantly enhanced accumulation of its transcripts was detected in pulp and skin of ethylene-treated fruits. Ripening-related and fruit-specific expression profile of MiOMTS and substrate specificity towards furaneol is a suggestive of its involvement in the synthesis of mesifuran in Alphonso mango. Moreover, a significant trigger in the expression of MiOMTS transcripts in ethylene-treated fruits point towards the transcriptional regulation of mesifuran biosynthesis by ethylene.


Assuntos
Mangifera/enzimologia , Metiltransferases/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/genética , Metiltransferases/química , Metiltransferases/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...