Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Talanta ; 276: 126216, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38761653

RESUMO

Human amniotic mesenchymal stromal cells (hAMSCs) have unique immunomodulatory properties making them attractive candidates for regenerative applications in inflammatory diseases. Most of their beneficial properties are mediated through their secretome. The bioactive factors concurring to its therapeutic activity are still unknown. Evidence suggests synergy between the two main components of the secretome, soluble factors and vesicular fractions, pivotal in shifting inflammation and promoting self-healing. Biological variability and the absence of quality control (QC) protocols hinder secretome-based therapy translation to clinical applications. Moreover, vesicular secretome contains a multitude of particles with varying size, cargos and functions whose complexity hinders full characterization and comprehension. This study achieved a significant advancement in secretome characterization by utilizing native, FFF-based separation and characterizing extracellular vesicles derived from hAMSCs. This was accomplished by obtaining dimensionally homogeneous fractions then characterized based on their protein content, potentially enabling the identification of subpopulations with diverse functionalities. This method proved to be successful as an independent technique for secretome profiling, with the potential to contribute to the standardization of a qualitative method. Additionally, it served as a preparative separation tool, streamlining populations before ELISA and LC-MS characterization. This approach facilitated the categorization of distinctive and recurring proteins, along with the identification of clusters associated with vesicle activity and functions. However, the presence of proteins unique to each fraction obtained through the FFF separation tool presents a challenge for further analysis of the protein content within these cargoes.

2.
Biochem Biophys Res Commun ; 703: 149656, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38364681

RESUMO

Dystroglycan (DG) is a cell adhesion complex that is widely expressed in tissues. It is composed by two subunits, α-DG, a highly glycosylated protein that interacts with several extracellular matrix proteins, and transmembrane ß-DG whose, cytodomain binds to the actin cytoskeleton. Glycosylation of α-DG is crucial for functioning as a receptor for its multiple extracellular binding partners. Perturbation of α-DG glycosylation is the central event in the pathogenesis of severe pathologies such as muscular dystrophy and cancer. ß-DG acts as a scaffold for several cytoskeletal and nuclear proteins and very little is known about the fine regulation of some of these intracellular interactions and how they are perturbed in diseases. To start filling this gap by identifying uncharacterized intracellular networks preferentially associated with ß-DG, HEK-293 cells were transiently transfected with a plasmid carrying the ß-DG subunit with GFP fused at its C-terminus. With this strategy, we aimed at forcing ß-DG to occupy multiple intracellular locations instead of sitting tightly at its canonical plasma membrane milieu, where it is commonly found in association with α-DG. Immunoprecipitation by anti-GFP antibodies followed by shotgun proteomic analysis led to the identification of an interactome formed by 313 exclusive protein matches for ß-DG binding. A series of already known ß-DG interactors have been found, including ezrin and emerin, whilst significant new matches, which include potential novel ß-DG interactors and their related networks, were identified in diverse subcellular compartments, such as cytoskeleton, endoplasmic reticulum/Golgi, mitochondria, nuclear membrane and the nucleus itself. Of particular interest amongst the novel identified matches, Lamina-Associated Polypeptide-1B (LAP1B), an inner nuclear membrane protein, whose mutations are known to cause nuclear envelopathies characterized by muscular dystrophy, was found to interact with ß-DG in HEK-293 cells. This evidence was confirmed by immunoprecipitation, Western blotting and immunofluorescence experiments. We also found by immunofluorescence experiments that LAP1B looses its nuclear envelope localization in C2C12 DG-knock-out cells, suggesting that LAP1B requires ß-DG for a proper nuclear localization. These results expand the role of ß-DG as a nuclear scaffolding protein and provide novel evidence of a possible link between dystroglycanopathies and nuclear envelopathies displaying with muscular dystrophy.


Assuntos
Distroglicanas , Distrofias Musculares , Humanos , Distroglicanas/química , Células HEK293 , Proteômica , Distrofias Musculares/metabolismo , Membrana Nuclear/metabolismo
3.
Stem Cell Res Ther ; 14(1): 339, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012707

RESUMO

BACKGROUND: The secretome of mesenchymal stromal cells isolated from the amniotic membrane (hAMSCs) has been extensively studied for its in vitro immunomodulatory activity as well as for the treatment of several preclinical models of immune-related disorders. The bioactive molecules within the hAMSCs secretome are capable of modulating the immune response and thus contribute to stimulating regenerative processes. At present, only a few studies have attempted to define the composition of the secretome, and several approaches, including multi-omics, are underway in an attempt to precisely define its composition and possibly identify key factors responsible for the therapeutic effect. METHODS: In this study, we characterized the protein composition of the hAMSCs secretome by a filter-aided sample preparation (FASP) digestion and liquid chromatography-high resolution mass spectrometry (LC-MS) approach. Data were processed for gene ontology classification and functional protein interaction analysis by bioinformatics tools. RESULTS: Proteomic analysis of the hAMSCs secretome resulted in the identification of 1521 total proteins, including 662 unique elements. A number of 157 elements, corresponding to 23.7%, were found as repeatedly characterizing the hAMSCs secretome, and those that resulted as significantly over-represented were involved in immunomodulation, hemostasis, development and remodeling of the extracellular matrix molecular pathways. CONCLUSIONS: Overall, our characterization enriches the landscape of hAMSCs with new information that could enable a better understanding of the mechanisms of action underlying the therapeutic efficacy of the hAMSCs secretome while also providing a basis for its therapeutic translation.


Assuntos
Âmnio , Células-Tronco Mesenquimais , Humanos , Âmnio/metabolismo , Proteômica/métodos , Secretoma , Células-Tronco Mesenquimais/metabolismo , Espectrometria de Massas
4.
Diagnostics (Basel) ; 13(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37761239

RESUMO

The present review aims to describe the state of the art of research studies investigating the citrullination post-translational modification in adult and pediatric brain tumors. After an introduction to the deimination reaction and its occurrence in proteins and polypeptide chains, the role of the citrullination post-translational modification in physiological as well as pathological states, including cancer, is summarized, and the recent literature and review papers on the topic are examined. A separate section deals with the specific focus of investigation of the citrullination post-translational modification in relation to brain tumors, examining the state of the art of the literature that mainly concerns adult and pediatric glioblastoma and posterior fossa pediatric tumors. We examined the literature on this emerging field of research, and we apologize in advance for any possible omission. Although only a few studies inspecting citrullination in brain tumors are currently available, the results interestingly highlighted different profiles of the citrullinome associated with different histotypes. The data outlined the importance of this post-translational modification in modulating cancer invasion and chemoresistance, influencing key factors involved in apoptosis, cancer cell communication through extracellular vesicle release, autophagy, and gene expression processes, which suggests the prospect of taking citrullination as a target of cancer treatment or as a source of potential diagnostic and prognostic biomarkers for potential clinical applications in the future.

5.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628956

RESUMO

In this review, we extensively describe the main post-translational modifications that give rise to the multiple proteoforms characterized to date in the human salivary proteome and their potential role. Most of the data reported were obtained by our group in over twenty-five years of research carried out on human saliva mainly by applying a top-down strategy. In the beginning, we describe the products generated by proteolytic cleavages, which can occur before and after secretion. In this section, the most relevant families of salivary proteins are also described. Next, we report the current information concerning the human salivary phospho-proteome and the limited news available on sulfo-proteomes. Three sections are dedicated to the description of glycation and enzymatic glycosylation. Citrullination and N- and C-terminal post-translational modifications (PTMs) and miscellaneous other modifications are described in the last two sections. Results highlighting the variation in the level of some proteoforms in local or systemic pathologies are also reviewed throughout the sections of the manuscript to underline the impact and relevance of this information for the development of new diagnostic biomarkers useful in clinical practice.


Assuntos
Proteoma , Proteínas e Peptídeos Salivares , Humanos , Processamento de Proteína Pós-Traducional , Glicosilação , Proteólise
6.
Sci Rep ; 13(1): 14113, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644064

RESUMO

Lactoferrin, a multifunctional iron-binding protein containing 16 disulfides, is actively studied for its antibacterial and anti-carcinogenic properties. However, scarce information is nowadays available about its oxidative folding starting from the reduced and unfolded status. This study discovers unusual properties when this protein is examined in its reduced molten globule-like conformation. Using kinetic, CD and fluorescence analyses together with mass spectrometry, we found that a few cysteines display astonishing hyper-reactivity toward different thiol reagents. In details, four cysteines (i.e. 668, 64, 512 and 424) display thousands of times higher reactivity toward GSSG but normal against other natural disulfides. The formation of these four mixed-disulfides with glutathione probably represents the first step of its folding in vivo. A widespread low pKa decreases the reactivity of other 14 cysteines toward GSSG limiting their involvement in the early phase of the oxidative folding. The origin of this hyper-reactivity was due to transient lactoferrin-GSSG complex, as supported by fluorescence experiments. Lactoferrin represents another disulfide containing protein in addition to albumin, lysozyme, ribonuclease, chymotrypsinogen, and trypsinogen which shows cysteines with an extraordinary and specific hyper-reactivity toward GSSG confirming the discovery of a fascinating new feature of proteins in their nascent phase.


Assuntos
Albuminas , Lactoferrina , Dissulfeto de Glutationa , Antibacterianos , Cisteína , Dissulfetos
7.
Biomed Pharmacother ; 162: 114679, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068332

RESUMO

Colorectal cancer (CRC) is the second most common cause of cancer death, leading to almost 1 million deaths per year. Despite constant progress in surgical and therapeutic protocols, the 5-year survival rate of advanced CRC patients remains extremely poor. Colorectal Cancer Stem Cells (CRC-CSCs) are endowed with unique stemness-related properties responsible for resistance, relapse and metastasis. The development of novel therapeutics able to tackle CSCs while avoiding undesired toxicity is a major need for cancer treatment. Natural products are a large reservoir of unexplored compounds with possible anticancer bioactivity, sustainability, and safety. The family of meroterpenoids derived from sponges share interesting bioactive properties. Bioassay-guided fractionation of a meroterpenoids extract led to the isolation of three compounds, all cytotoxic against several cancer cell lines: Metachromins U, V and W. In this study, we evaluated the anticancer potential of the most active one, Metachromins V (MV), on patient-derived CRC-CSCs. MV strongly impairs CSCs-viability regardless their mutational background and the cytotoxic effect is maintained on therapy-resistant metastatic CSCs. MV affects cell cycle progression, inducing a block in G2 phase in all the cell lines tested and more pronouncedly in CRC-CSCs. Moreover, MV triggers an important reorganization of the cytoskeleton and a strong reduction of Rho GTPases expression, impairing CRC-CSCs motility and invasion ability. By Proteomic analysis identified a potential molecular target of MV: CCAR1, that regulates apoptosis under chemotherapy treatments and affect ß-catenin pathway. Further studies will be needed to confirm and validate these data in in vivo experimental models.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Proteômica , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Neoplasias Colorretais/patologia , Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo
8.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328618

RESUMO

The present investigation aimed to explore the intact proteome of tissues of pediatric brain tumors of different WHO grades and localizations, including medulloblastoma, pilocytic astrocytoma, and glioblastoma, in comparison with the available data on ependymoma, to contribute to the understanding of the molecular mechanisms underlying the onset and progression of these pathologies. Tissues have been homogenized in acidic water−acetonitrile solutions containing proteases inhibitors and analyzed by LC−high resolution MS for proteomic characterization and label-free relative quantitation. Tandem MS spectra have been analyzed by either manual inspection or software elaboration, followed by experimental/theoretical MS fragmentation data comparison by bioinformatic tools. Statistically significant differences in protein/peptide levels between the different tumor histotypes have been evaluated by ANOVA test and Tukey's post-hoc test, considering a p-value > 0.05 as significant. Together with intact protein and peptide chains, in the range of molecular mass of 1.3−22.8 kDa, several naturally occurring fragments from major proteins, peptides, and proteoforms have been also identified, some exhibiting proper biological activities. Protein and peptide sequencing allowed for the identification of different post-translational modifications, with acetylations, oxidations, citrullinations, deamidations, and C-terminal truncations being the most frequently characterized. C-terminal truncations, lacking from two to four amino acid residues, particularly characterizing the ß-thymosin peptides and ubiquitin, showed a different modulation in the diverse tumors studied. With respect to the other tumors, medulloblastoma, the most frequent malignant brain tumor of the pediatric age, was characterized by higher levels of thymosin ß4 and ß10 peptides, the latter and its des-IS form particularly marking this histotype. The distribution pattern of the C-terminal truncated forms was also different in glioblastoma, particularly underlying gender differences, according to the definition of male and female glioblastoma as biologically distinct diseases. Glioblastoma was also distinguished for the peculiar identification of the truncated form of the α-hemoglobin chain, lacking the C-terminal arginine, and exhibiting oxygen-binding and vasoconstrictive properties different from the intact form. The proteomic characterization of the undigested proteome, following the top-down approach, was challenging to originally investigate the post-translational events that differently characterize pediatric brain tumors. This study provides a contribution to elucidate the molecular profiles of the solid tumors most frequently affecting the pediatric age, and which are characterized by different grades of aggressiveness and localization.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Glioblastoma , Meduloblastoma , Neoplasias Encefálicas/metabolismo , Criança , Feminino , Humanos , Masculino , Peptídeos/química , Proteoma/metabolismo , Proteômica/métodos
9.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216175

RESUMO

Based on our previous proteomic study on Cavitating Ultrasound Aspirator (CUSA) fluid pools of Newly Diagnosed (ND) and Recurrent (R) glioblastomas (GBMs) of tumor core and periphery, as defined by 5-aminolevulinc acid (5-ALA) metabolite fluorescence, this work aims to apply a bioinformatic approach to investigate specifically into three sub-proteomes, i.e., Not Detected in Brain (NB), Cancer Related (CR) and Extracellular Vesicles (EVs) proteins following selected database classification. The study of these yet unexplored specific datasets aims to understand the high infiltration capability and relapse rate that characterizes this aggressive brain cancer. Out of the 587 proteins highly confidently identified in GBM CUSA pools, 53 proteins were classified as NB. Their gene ontology (GO) analysis showed the over-representation of blood coagulation and plasminogen activating cascade pathways, possibly compatible with Blood Brain Barrier damage in tumor disease and surgery bleeding. However, the NB group also included non-blood proteins and, specifically, histones correlated with oncogenesis. Concerning CR proteins, 159 proteins were found in the characterized GBM proteome. Their GO analysis highlighted the over-representation of many pathways, primarily glycolysis. Interestingly, while CR proteins were identified in ND-GBM exclusively in the tumor zones (fluorescence positive core and periphery zones) as predictable, conversely, in R-GBM they were unexpectedly characterized prevalently in the healthy zone (fluorescence negative tumor periphery). Relative to EVs protein classification, 60 proteins were found. EVs are over-released in tumor disease and are important in the transport of biological macromolecules. Furthermore, the presence of EVs in numerous body fluids makes them a possible low-invasive source of brain tumor biomarkers to be investigated. These results give new hints on the molecular features of GBM in trying to understand its aggressive behavior and open to more in-depth investigations to disclose potential disease biomarkers.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteoma/metabolismo , Neoplasias Encefálicas/genética , Vesículas Extracelulares/metabolismo , Glioblastoma/genética , Glicólise , Humanos , Proteoma/genética
10.
J Sep Sci ; 44(19): 3677-3690, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34350708

RESUMO

Human whole saliva is a bodily fluid that can be obtained easily by noninvasive techniques. Specimens can be collected by the patient also at home in order to monitor health status and variations of several analytes of clinical interest. The contributions to whole saliva include secretions from salivary glands and, among others, from the gingival crevicular fluid that derives from the epithelial mucosa. Therefore, saliva is currently a relevant diagnostic fluid for many substances, including steroids, nonpeptide hormones, therapeutic drugs, and drugs of abuse. This review at first briefly describes the different contributions to whole saliva. A section illustrates the procedures for the collection, handling, and storage of salivary specimens. Another section describes the present use of whole saliva for diagnostic purposes and its specific utilization for the diagnosis of several local and systemic diseases. The final sections illustrate the future opportunities offered by various not conventional techniques with a focus on the most recent -omic investigations. It describes the various issues that have to be taken into account to avoid false positives and negatives, such as the strength of the experimental plan, the adequacy of the number of samples under study, and the proper choice of controls.


Assuntos
Biomarcadores/análise , Saliva/química , Humanos , Proteoma/análise , Proteômica
11.
Bioorg Chem ; 115: 105170, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34332233

RESUMO

In the current work, a series of novel 4-benzyloxy and 4-(2-phenylethoxy) chalcone fibrate hybrids (10a-o) and (11a-e) were synthesized and evaluated as new PPARα agonists in order to find new agents with higher activity and fewer side effects. The 2-propanoic acid derivative 10a and the 2-butanoic acid congener 10i showed the best overall PPARα agonistic activity showing Emax% values of 50.80 and 90.55%, respectively, and EC50 values of 8.9 and 25.0 µM, respectively, compared to fenofibric acid with Emax = 100% and EC50 = 23.22 µM, respectively. These two compounds also stimulated carnitine palmitoyltransferase 1A gene transcription in HepG2 cells and PPARα protein expression. Molecular docking simulations were performed for the newly synthesized compounds to study their predicted binding pattern and energies in PPARα active site to rationalize their promising activity. In vivo, compounds 10a and 10i elicited a significant hypolipidemic activity improving the lipid profile in triton WR-1339-induced hyperlipidemic rats, including serum triglycerides, total cholesterol, LDL, HDL and VLDL levels. Compound 10i possessed better anti-hyperlipidemic activity than 10a. At a dose of 200 mg/kg, it demonstrated significantly lower TC, TG, LDL and VLDL levels than that of fenofibrate at the same dose with similar HDL levels. Compounds 10i and 10a possessed atherogenic indices (CRR, AC, AI, CRI-II) like that of fenofibrate. Additionally, a promising antioxidant activity indicated by the increased tissue reduced glutathione and plasma total antioxidant capacity with decreased plasma malondialdehyde levels was demonstrated by compounds 10a and 10i. No histopathological alterations were recorded in the hepatic tissue of compound 10i (200 mg/kg).


Assuntos
Antioxidantes/química , Chalconas/química , Desenho de Fármacos , Ácidos Fíbricos/química , Hipolipemiantes/síntese química , PPAR alfa/agonistas , Animais , Sítios de Ligação , Domínio Catalítico , Humanos , Hiperlipidemias/induzido quimicamente , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/metabolismo , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Lipídeos/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Simulação de Acoplamento Molecular , PPAR alfa/genética , PPAR alfa/metabolismo , Ratos , Relação Estrutura-Atividade , Ativação Transcricional/efeitos dos fármacos
12.
Childs Nerv Syst ; 37(3): 789-797, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32617710

RESUMO

BACKGROUND: Many efforts have been performed in the last decade to accomplish the genomic and proteomic characterization of pediatric adamantinomatous craniopharyngioma with the purpose to elucidate the molecular mechanisms underlying the onset and development of this pediatric brain tumor, its high recurrence rate, and, although classified as a histologically benign neoplasm, its aggressive behavior. METHODS: The focus of this review is to perform the new comparison of the proteomic profiles of the solid component and the intracystic fluid of adamantinomatous craniopharyngioma based on our previous results, obtained by both the top-down and the bottom-up proteomic approaches, to disclose differences and similarities, and to discuss the results in the context of the most recent literature. RESULTS AND CONCLUSIONS: Proteins and peptides identified in the cyst fluid and in the solid component of adamantinomatous craniopharyngioma (AC) include beyond markers of inflammation (i.e., alpha-defensins), proteins involved in cell migration and protein degradation (i.e., beta-thymosin and ubiquitin peptides), whose main role might be in tumor growth and infiltration of the surrounding neural structures. These last appeared different in the solid components compared with the cyst fluid, missing their terminal part in the solid tissue, a feature generally associated to malignancies, which might represent a distinct molecular site for an aggressive behavior of AC.


Assuntos
Craniofaringioma , Neoplasias Hipofisárias , Criança , Líquido Cístico , Humanos , Recidiva Local de Neoplasia , Proteômica
13.
Talanta ; 222: 121429, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33167196

RESUMO

To have information on the proteolytic activity of convertases and exo-peptidases on human salivary proteins, this study investigated the relative amounts of the truncated proteoforms in the saliva of preterm newborns and compared them with the relative amounts measured in saliva of at-term newborns, of babies (0-10 years old) and of adults. Results indicated that convertase(s), acting on acidic proline-rich proteins and histatin 3, and carboxypeptidase(s) acting on acidic proline-rich proteins, P-C peptide, histatin 6 and statherin were many folds more active in preterm newborns than in the other groups. Conversely, the aminopeptidase responsible for the removal of the N-terminal Asp residue of statherin was not active in preterm newborns, becoming active only several months after the normal term of delivery. The high activity of convertases determined in preterm newborns suggests that it is required for the molecular events connected to the fetus development, and encourages further studies devoted to the characterization of their specific substrates.


Assuntos
Saliva , Proteínas e Peptídeos Salivares , Adulto , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Exopeptidases , Desenvolvimento Fetal , Humanos , Lactente , Recém-Nascido
16.
Cancers (Basel) ; 13(1)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374813

RESUMO

The present investigation aimed to characterize the protein profile of cavitating ultrasound aspirator fluid of newly diagnosed and recurrent glioblastoma comparing diverse zones of collection, i.e., tumor core and tumor periphery, with the aid of 5-aminolevulinic acid fluorescence. The samples were pooled and analyzed in triplicate by LC-MS following the shotgun proteomic approach. The identified proteins were then grouped to disclose elements exclusive and common to the tumor state or tumor zones and submitted to gene ontology classification and pathway overrepresentation analysis. The proteins common to the distinct zones were further investigated by relative quantitation, following a label free approach, to disclose possible differences of expression. Nine proteins, i.e., tubulin 2B chain, CD59, far upstream element-binding, CD44, histone H1.4, caldesmon, osteopontin, tropomyosin chain and metallothionein-2, marked the core of newly diagnosed glioblastoma with respect to tumor periphery. Considering the tumor zone, including the core and the fluorescence positive periphery, the serine glycine biosynthesis, pentose phosphate, 5-hydroxytryptamine degredation, de novo purine biosynthesis and huntington disease pathways resulted statistically significantly overrepresented with respect to the human genome of reference. The fluorescence negative zone shared several protein elements with the tumor zone, possibly indicating the presence of pathological aspects of glioblastoma rather than of normal brain parenchyma. On the other hand, its exclusive protein elements were considered to represent the healthy zone and, accordingly, exhibiting no pathways overrepresentation. On the contrary to newly diagnosed glioblastoma, pathway overrepresentation was recognized only in the healthy zone of recurrent glioblastoma. The TGFß signaling pathway, exclusively classified in the fluorescence negative periphery in newly diagnosed glioblastoma, was instead the exclusive pathway classified in the tumor core of recurrent glioblastoma. These results, preliminary obtained on sample pools, demonstrated the potential of cavitron ultrasonic sur.

17.
J Proteomics ; 226: 103890, 2020 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629195

RESUMO

Gingival Crevicular Fluid (GCF), a plasma-derived exudate present in the gingival crevice was collected from deciduous, exfoliating and permanent teeth from 20 children (60 samples) with the aim to characterize and quantify by a mass spectrometry based top-down proteomic approach, the peptide/proteins in the fluid and verify possible variations occurring during the exfoliating process. The results obtained confirmed the presence in GCF of α-Defensins 1-4, Thymosin ß4 and Thymosin ß10, as described in previous works and revealed the presence of other interesting peptides never described before in GCF such as specific fragments of α-1-antitrypsin, α-1-antichymotrypsin; fragments of Thymosin ß4 and Thymosin ß10; Fibrinopeptide A and its fragments and Fibrinopeptide B; S100A8 and S100A9, LVV Hemorphin-7 (hemoglobin chain ß fragment), as well as some other peptides deriving from α and ß subunits of hemoglobin. Statistical analysis evidenced different levels in 5 proteins/peptides in the three groups. Our study demonstrate that an in-depth analysis of a biological fluid like GCF, present in small amount, can provide useful information for the understanding of different biological processes like teeth eruption. Data are available via ProteomeXchange with identifier PXD016010 and PXD016049. SIGNIFICANCE: GCF due to his site-specific nature has a great potential in containing factors that are specific for action at a given site and might have diagnostic value to detect qualitative and quantitative variations of proteins/peptides composition linked to physiological or pathological conditions.


Assuntos
Líquido do Sulco Gengival , Proteômica , Criança , Humanos , Espectrometria de Massas , Peptídeos
18.
Cancers (Basel) ; 12(3)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183175

RESUMO

Ependymoma pediatric brain tumor occurs at approximate frequencies of 10-15% in supratentorial and 20-30% in posterior fossa regions. These tumors have an almost selective response to surgery and relative and confirmed resistance to radiotherapy and chemotherapic agents, respectively. Alongside histopathological grading, clinical and treatment evaluation of ependymomas currently consider the tumor localization and the genomic outlined associated molecular subgroups, with the supratentorial and the posterior fossa ependymomas nowadays considered diverse diseases. On these grounds and in trying to better understand the molecular features of these tumors, the present investigation aimed to originally investigate the proteomic profile of pediatric ependymoma tissues of different grade and localization by mass spectrometry platforms to disclose potential distinct protein phenotypes. To this purpose, acid-soluble and acid-insoluble fractions of ependymoma tumor tissues homogenates were analyzed by LC-MS following both the top-down and the shotgun proteomic approaches, respectively, to either investigate the intact proteome or its digested form. The two approaches were complementary in profiling the ependymoma tumor tissues and showed distinguished profiles for supratentorial and posterior fossa ependymomas and for WHO II and III tumor grades. Top-down proteomic analysis revealed statistically significant higher levels of thymosin beta 4, 10 kDa heat shock protein, non-histone chromosomal protein HMG-17, and mono-/uncitrullinated forms ratio of the glial fibrillary acidic protein (GFAP) fragment 388-432 in supratentorial ependymomas-the same GFAP fragment as well as the hemoglobin alpha- and the beta-chain marked grade II with respect to grade III posterior fossa ependymomas. Gene ontology classification of shotgun data of the identified cancer and the non-cancer related proteins disclosed protein elements exclusively marking tumor localization and pathways that were selectively overrepresented. These results, although preliminary, seem consistent with different protein profiles of ependymomas of diverse grade of aggressiveness and brain region development and contributed to enlarging the molecular knowledge of this still enigmatic tumor.

19.
J Proteome Res ; 19(1): 300-313, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31638822

RESUMO

Because of the distinctive features of the oral cavity, the determination of the proteins involved in the formation of the "oral protein pellicle" is demanding. The present study investigated the susceptibility of several human basic proline-rich peptides, named P-H, P-D, P-F, P-J, and II-2, as substrates of transglutaminase-2. The reactivity of the P-C peptide and statherin was also investigated. Peptides purified from human whole saliva were incubated with the enzyme in the presence or in the absence of monodansyl-cadaverine. Mass spectrometry analyses of the reaction products highlighted that P-H and P-D (P32 and A32 variants) were active substrates, II-2 was less reactive, and P-F and P-J showed very low reactivity. P-C and statherin were highly reactive. All of the peptides formed cyclo derivatives, and only specific glutamine residues were involved in the cycle formation and reacted with monodansyl-cadaverine: Q29 of P-H, Q37 of P-D, Q21 of II-2, Q41 of P-C, and Q37 of statherin were the principal reactive residues. One or two secondary glutamine residues of only P-H, P-D P32, P-C, and statherin were hierarchically susceptible to the reaction with monodansyl-cadaverine. MS and MS/MS data were deposited to the ProteomeXchange Consortium ( http://www.ebi.ac.uk/pride ) via the PRIDE partner repository with the data set identifier PXD014658.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas Salivares Ricas em Prolina/metabolismo , Transglutaminases/metabolismo , Cadaverina/análogos & derivados , Cadaverina/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Cinética , Lisina/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Saliva/metabolismo , Proteínas Salivares Ricas em Prolina/química , Proteínas Salivares Ricas em Prolina/isolamento & purificação , Proteínas e Peptídeos Salivares/metabolismo , Espectrometria de Massas por Ionização por Electrospray
20.
J Sep Sci ; 43(1): 313-336, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31631532

RESUMO

More than 300 different protein post-translational modifications are currently known, but only a few have been extensively investigated because modified proteoforms are commonly present in sub-stoichiometry amount. For this reason, improvement of specific enrichment techniques is particularly useful for the proteomic characterization of post-translationally modified proteins. Enrichment proteomic strategies could help the researcher in the challenging issue to decipher the complex molecular cross-talk existing between the different factors influencing the cellular pathways. In this review the state of art of the platforms applied for the enrichment of specific and most common post-translational modifications, such as glycosylation and glycation, phosphorylation, sulfation, redox modifications (i.e. sulfydration and nitrosylation), methylation, acetylation, and ubiquitinylation, are described. Enrichments strategies applied to characterize less studied post-translational modifications are also briefly discussed.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Proteômica , Glicosilação , Humanos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...