Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(19): e2203120, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37058273

RESUMO

Glioblastoma multiforme (GBM) is the deadliest brain tumor, characterized by an extreme genotypic and phenotypic variability, besides a high infiltrative nature in healthy tissues. Apart from very invasive surgical procedures, to date, there are no effective treatments, and life expectancy is very limited. In this work, an innovative therapeutic approach based on lipid-based magnetic nanovectors is proposed, owning a dual therapeutic function: chemotherapy, thanks to an antineoplastic drug (regorafenib) loaded in the core, and localized magnetic hyperthermia, thanks to the presence of iron oxide nanoparticles, remotely activated by an alternating magnetic field. The drug is selected based on ad hoc patient-specific screenings; moreover, the nanovector is decorated with cell membranes derived from patients' cells, aiming at increasing homotypic and personalized targeting. It is demonstrated that this functionalization not only enhances the selectivity of the nanovectors toward patient-derived GBM cells, but also their blood-brain barrier in vitro crossing ability. The localized magnetic hyperthermia induces both thermal and oxidative intracellular stress that lead to lysosomal membrane permeabilization and to the release of proteolytic enzymes into the cytosol. Collected results show that hyperthermia and chemotherapy work in synergy to reduce GBM cell invasion properties, to induce intracellular damage and, eventually, to prompt cellular death.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Hipertermia Induzida , Humanos , Glioblastoma/patologia , Hipertermia Induzida/métodos , Resultado do Tratamento , Fenômenos Magnéticos , Linhagem Celular Tumoral , Neoplasias Encefálicas/terapia
2.
Biomater Sci ; 9(24): 8171-8188, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34617936

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease with no satisfactory therapy options. Similar to other neurodegenerative conditions, such as Alzheimer's and Huntington's diseases, oxidative stress plays a key factor in the neurodegeneration process. To counteract the uncontrolled increase of reactive oxygen species (ROS) and oxidative stress-dependent cell death, several preclinical and clinical tests exploit natural-derived organic antioxidants, such as polyphenols. Despite some promising results, free antioxidants show scarce brain accumulation and may exhaust their scavenging activity before reaching the brain. In this work, we developed an antioxidant therapeutic nanoplatform consisting of nano-sized functionalized liposomes loaded with selected polyphenol-rich vegetal extracts with high blood-brain barrier crossing capabilities. The antioxidant extracts were obtained from the grape seeds and skins as a byproduct of wine production (i.e., pomace), following a sustainable circular approach with reduced environmental impact. The antioxidant nanoplatform was successfully tested in a relevant in vitro model of PD, where it completely rescued the ROS levels, prevented the aggregation of α-synuclein fibrils, and restored cell viability, paving the way for preclinical translation of the approach.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Vitis , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Humanos , Lipossomos , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais , Polifenóis/farmacologia , Rotenona , Vitis/metabolismo
3.
Macromol Biosci ; 21(9): e2100181, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34212510

RESUMO

Tetrapyrroles are the basis of essential physiological functions in most living organisms. These compounds represent the basic scaffold of porphyrins, chlorophylls, and bacteriochlorophylls, among others. Chlorophyll derivatives, obtained by the natural or artificial degradation of chlorophylls, present unique properties, holding great potential in the scientific and medical fields. Indeed, they can act as cancer-preventing agents, antimutagens, apoptosis inducers, efficient antioxidants, as well as antimicrobial and immunomodulatory molecules. Moreover, thanks to their peculiar optical properties, they can be exploited as photosensitizers for photodynamic therapy and as vision enhancers. Most of these molecules, however, are highly hydrophobic and poorly soluble in biological fluids, and may display undesired toxicity due to accumulation in healthy tissues. The advent of nanomedicine has prompted the development of nanoparticles acting as carriers for chlorophyll derivatives, facilitating their targeted administration with demonstrated applicability in diagnosis and therapy. In this review, the chemical and physical properties of chlorophyll derivatives that justify their usage in the biomedical field, with particular regard to light-activated dynamics are described. Their role as antioxidants and photoactive agents are discussed, introducing the most recent nanomedical applications and focusing on inorganic and organic nanocarriers exploited in vitro and in vivo.


Assuntos
Fotoquimioterapia , Porfirinas , Clorofila/química , Clorofila/farmacologia , Nanomedicina , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química
4.
Front Bioeng Biotechnol ; 8: 579141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195139

RESUMO

The progressive degeneration of retinal photoreceptors is one of the most significant causes of blindness in humans. Conjugated polymers represent an attractive solution to the field of retinal prostheses, and a multi-layer fully organic prosthesis implanted subretinally in dystrophic Royal College of Surgeons (RCS) rats was able to rescue visual functions. As a step toward human translation, we report here the fabrication and in vivo testing of a similar device engineered to adapt to the human-like size of the eye of the domestic pig, an excellent animal paradigm to test therapeutic strategies for photoreceptors degeneration. The active conjugated polymers were layered onto two distinct passive substrates, namely electro-spun silk fibroin (ESF) and polyethylene terephthalate (PET). Naive pigs were implanted subretinally with the active device in one eye, while the contralateral eye was sham implanted with substrate only. Retinal morphology and functionality were assessed before and after surgery by means of in vivo optical coherence tomography and full-field electroretinogram (ff-ERG) analysis. After the sacrifice, the retina morphology and inflammatory markers were analyzed by immunohistochemistry of the excised retinas. Surprisingly, ESF-based prostheses caused a proliferative vitreoretinopathy with disappearance of the ff-ERG b-wave in the implanted eyes. In contrast, PET-based active devices did not evoke significant inflammatory responses. As expected, the subretinal implantation of both PET only and the PET-based prosthesis locally decreased the thickness of the outer nuclear layer due to local photoreceptor loss. However, while the implantation of the PET only substrate decreased the ff-ERG b-wave amplitude with respect to the pre-implant ERG, the eyes implanted with the active device fully preserved the ERG responses, indicating an active compensation of the surgery-induced photoreceptor loss. Our findings highlight the possibility of developing a new generation of conjugated polymer/PET-based prosthetic devices that are highly biocompatible and potentially suitable for subretinal implantation in patients suffering from degenerative blindness.

5.
ACS Appl Mater Interfaces ; 11(31): 28125-28137, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356041

RESUMO

Hybrid interfaces between living cells and nano/microstructured scaffolds have huge application potential in biotechnology, spanning from regenerative medicine and stem cell therapies to localized drug delivery and from biosensing and tissue engineering to neural computing. However, 3D architectures based on semiconducting polymers, endowed with responsivity to visible light, have never been considered. Here, we apply for the first time a push-coating technique to realize high aspect ratio polymeric pillars, based on polythiophene, showing optimal biocompatibility and allowing for the realization of soft, 3D cell cultures of both primary neurons and cell line models. HEK-293 cells cultured on top of polymer pillars display a remarkable change in the cell morphology and a sizable enhancement of the membrane capacitance due to the cell membrane thinning in correspondence to the pillars' top surface, without negatively affecting cell proliferation. Electrophysiology properties and synapse number of primary neurons are also very well preserved. In perspective, high aspect ratio semiconducting polymer pillars may find interesting applications as soft, photoactive elements for cell activity sensing and modulation.


Assuntos
Técnicas de Cultura de Células , Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Neurônios/metabolismo , Semicondutores , Animais , Células HEK293 , Humanos , Neurônios/citologia , Ratos
6.
Sci Rep ; 8(1): 3517, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476146

RESUMO

We report the first demonstration of a solution processable, optically switchable 1D photonic crystal which incorporates phototunable doped metal oxide nanocrystals. The resulting device structure shows a dual optical response with the photonic bandgap covering the visible spectral range and the plasmon resonance of the doped metal oxide the near infrared. By means of a facile photodoping process, we tuned the plasmonic response and switched effectively the optical properties of the photonic crystal, translating the effect from the near infrared to the visible. The ultrafast bandgap pumping induces a signal change in the region of the photonic stopband, with recovery times of several picoseconds, providing a step toward the ultrafast optical switching. Optical modeling uncovers the importance of a complete modeling of the variations of the dielectric function of the photodoped material, including the high frequency region of the Drude response which is responsible for the strong switching in the visible after photodoping. Our device configuration offers unprecedented tunability due to flexibility in device design, covering a wavelength range from the visible to the near infrared. Our findings indicate a new protocol to modify the optical response of photonic devices by optical triggers only.

7.
Nat Mater ; 16(6): 681-689, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28250420

RESUMO

The degeneration of photoreceptors in the retina is one of the major causes of adult blindness in humans. Unfortunately, no effective clinical treatments exist for the majority of retinal degenerative disorders. Here we report on the fabrication and functional validation of a fully organic prosthesis for long-term in vivo subretinal implantation in the eye of Royal College of Surgeons rats, a widely recognized model of retinitis pigmentosa. Electrophysiological and behavioural analyses reveal a prosthesis-dependent recovery of light sensitivity and visual acuity that persists up to 6-10 months after surgery. The rescue of the visual function is accompanied by an increase in the basal metabolic activity of the primary visual cortex, as demonstrated by positron emission tomography imaging. Our results highlight the possibility of developing a new generation of fully organic, highly biocompatible and functionally autonomous photovoltaic prostheses for subretinal implants to treat degenerative blindness.


Assuntos
Cegueira/fisiopatologia , Cegueira/terapia , Compostos Orgânicos , Recuperação de Função Fisiológica , Visão Ocular , Próteses Visuais , Animais , Modelos Animais de Doenças , Ratos
8.
Beilstein J Nanotechnol ; 7: 1404-1410, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826514

RESUMO

An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches.

9.
Adv Healthc Mater ; 5(17): 2271-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27240295

RESUMO

Replacement strategies arise as promising approaches in case of inherited retinal dystrophies leading to blindness. A fully organic retinal prosthesis made of conjugated polymers layered onto a silk fibroin substrate is engineered. First, the biophysical and surface properties are characterized; then, the long-term biocompatibility is assessed after implantation of the organic device in the subretinal space of 3-months-old rats for a period of five months. The results indicate a good stability of the subretinal implants over time, with preservation of the physical properties of the polymeric layer and a tight contact with the outer retina. Immunoinflammatory markers detect only a modest tissue reaction to the surgical insult and the foreign body that peaks shortly after surgery and progressively decreases with time to normal levels at five months after implantation. Importantly, the integrity of the polymeric layer in direct contact with the retinal tissue is preserved after five months of implantation. The recovery of the foreign-body tissue reaction is also associated with a normal b-wave in the electroretinographic response. The results demonstrate that the device implanted in nondystrophic eyes is well tolerated, highly biocompatible, and suitable as retinal prosthesis in case of photoreceptor degeneration.


Assuntos
Materiais Biocompatíveis/química , Implantes Experimentais , Teste de Materiais , Retina , Animais , Ratos
10.
ACS Nano ; 8(11): 11869-82, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25287044

RESUMO

Nondeterministic phenomena are at the base of plenty of biological processes that comprise physiological signaling, cellular communications, and biological architectures. Among them, natural surface topographies are often characterized by "chaotic" features that are not trivial to be recreated in vitro. Recently, some methods have been proposed to resemble the hierarchical organization of the extracellular microenvironment, through the chemical preparation of randomly rough and self-affine fractal surfaces. Notwithstanding, this approach does not allow the fractal dimension to be modulated at a desired value, being moreover the self-affinity maintained just for one decade of spatial frequencies. Here, we propose the replication of in silico generated Brownian surfaces through a two-photon polymerization technique. As a result of the direct laser writing of the desired patterns, we were able to obtain highly reproducible self-affine (in a range of two spatial frequency decades) structures characterized by the desired predetermined Hurst exponents. Rat mesenchymal stem cells were moreover cultured on the obtained substrates, highlighting interesting phenomena concerning cell adhesion, cytoskeleton conformation, and actin polymerization, strictly depending on the fractal dimension of the surfaces.


Assuntos
Células-Tronco Mesenquimais/citologia , Nanoestruturas , Fótons , Polimerização , Animais , Células Cultivadas , Microscopia de Força Atômica , Microscopia Confocal , Ratos , Propriedades de Superfície
11.
ACS Nano ; 8(6): 5552-63, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24797875

RESUMO

We report on the fabrication and characterization of a freestanding ultrathin, mucoadhesive gold nanoshell/polysaccharide multilayer nanocomposite (thermonanofilm, TNF), that can be used for controlled photothermal ablation of tissues through irradiation with near-infrared radiation (NIR) laser. The aim of this work is to provide a new strategy to precisely control particle concentration during photothermalization of cancerous lesions, since unpredictable and aspecific biodistributions still remains the central issue of inorganic nanoparticle-assisted photothermal ablation. Gold nanoshell encapsulation in polysaccharide matrix is achieved by drop casting deposition method combined with spin-assisted layer-by-layer (LbL) assembly. Submicrometric thickness of films ensures tissue adhesion. Basic laser-induced heating functionality has been demonstrated by in vitro TNF-mediated thermal ablation of human neuroblastoma cancer cells, evidenced by irreversible damage to cell membranes and nuclei. Ex vivo localized vaporization and carbonization of animal muscular tissue is also demonstrated by applying TNF onto tissue surface. Thermal distribution in the tissue reaches a steady state in a few seconds, with significant increases in temperature (ΔT > 50) occurring across an 1 mm span, ensuring control of local photothermalization and providing more safety and predictability with respect to traditional laser surgery. A steady-state model of tissue thermalization mediated by TNFs is also introduced, predicting the temperature distribution being known the absorbance of TNFs, the laser power, and the tissue thermal conductivity, thus providing useful guidelines in the development of TNFs. Thermonanofilms can find applications for local photothermal treatment of cancerous lesions and wherever high precision and control of heat treatment is required.


Assuntos
Ouro/química , Nanoconchas/química , Nanotecnologia/métodos , Polissacarídeos/química , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular , Galinhas , Humanos , Hipertermia Induzida , Lasers , Microscopia Eletrônica de Varredura , Fotoquímica , Espectroscopia de Luz Próxima ao Infravermelho , Ressonância de Plasmônio de Superfície , Temperatura , Fator de Necrose Tumoral alfa/química , Água/química
12.
Langmuir ; 29(43): 13190-7, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24073802

RESUMO

A novel drug delivery vector, a free-standing polymeric ultrathin film (nanofilm) composed of PMMA and a polysaccharides multilayer, is presented. Chitosan and sodium alginate are alternatively deposited by spin-assisted LbL assembly onto a plasma-treated PMMA thin film. Hydrophobic anti-inflammatory drugs, an adenosine deaminase inhibitor (APP) and its fluorescent dansyl derivate (APP-Dns), are encapsulated inside the LbL multilayer using a simple casting deposition procedure. The resulting drug loaded nanofilm can be suspended in water upon dissolution of a PVA sacrificial layer. Morphological characterization of the nanofilm shows that PMMA/LbL nanofilms possess nanometric thickness (<200 nm) and very low surface roughness (1-2 nm for drug loaded nanofilms and <1 nm for blank nanofilm). Drug loaded films exhibit a diffusion controlled release mechanism following the Korsmayer-Peppas release model, confirmed by the fit of release data with a characteristic power law. Drug release is impaired through the PMMA layer, which acts effectively as a barrier for drug transport. This ultrathin polymer film can find application as a nanopatch for targeted inflammatory drug delivery to treat localized pathologies as inflammatory bowel disease.


Assuntos
Inibidores de Adenosina Desaminase/química , Anti-Inflamatórios não Esteroides/química , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Polimetil Metacrilato/química , Polissacarídeos/química , Portadores de Fármacos/química , Cinética , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
13.
Biomed Microdevices ; 14(6): 1069-76, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22986760

RESUMO

In the last years, an increasing interest in bio-hybrid systems for what concerns the precise control of cell-material interactions has emerged. This trend leads towards the development of new nano-structured devices such as bioMEMS, tissue-engineering scaffolds, biosensors, etc. In the present study, we focused on the development of a spatio-selective cell culture environment based on the inkjet printing of bio-patterns on polymeric ultra-thin films (nanofilms) composed of poly(methylmethacrylate) (PMMA). Freestanding PMMA nanofilms having hundreds-of-nm thickness were prepared by spin-coating. Different shapes of cell adhesion promoters such as poly (L-lysine) (PLL) were micropatterned by inkjet printing. Moreover, to promote cell adhesion, the surface of PLL microarrays was modified with fibronectin via electorostatic interaction. The selective deposition of C2C12 skeletal muscle cells was confirmed and their viability was qualitatively assessed after 24 h. The combination of muscular cells with protein micropatterned freestanding nanofilm is beneficial for the implementation of new bio-hybrid system in muscular tissue engineering.


Assuntos
Nanoestruturas/química , Análise Serial de Proteínas/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Adesão Celular/fisiologia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Fibronectinas/química , Lisina/química , Camundongos , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/citologia , Polímeros , Análise Serial de Proteínas/instrumentação , Engenharia Tecidual/métodos
14.
Langmuir ; 27(21): 13173-82, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21913651

RESUMO

Investigation of the interactions between cells and material surfaces is important not only for the understanding of cell biology but also for the development of smart biomaterials. In this study, we investigated the substrate-related effects on the interaction between cell and polymeric ultrathin film (nanosheet) by modulating the mechanical properties of the nanosheet with a metal substrate or mesh. A freestanding polymeric nanosheet with tens-of-nanometers thickness composed of poly(L-lactic acid) (PLLA nanosheet) was fabricated by combination of a spin-coating technique and a water-soluble sacrificial layer. The freestanding PLLA nanosheet was collected on a stainless steel mesh (PLLA-mesh) and subsequently used for cell adhesion studies, comparing the results to the ones on a control SiO(2) substrate coated with an ultrathin layer of PLLA (PLLA-substrate). The adhesion of rat cardiomyocytes (H9c2) was evaluated on both samples after 24 h of culture. The PLLA-mesh with the tens-of-nanometers thick nanosheets induced an anisotropic adhesion of H9c2, while H9c2 on the PLLA-substrate showed an isotropic adhesion independent from the nanosheet thickness. Interestingly, an increment in the nanosheet thickness in the PLLA-mesh samples reduced the cellular anisotropy and led to a similar morphology to the PLLA-substrate. Considering the huge discrepancy of Young's modulus between PLLA nanosheet (3.5-4.2 GPa) and metal substrate (hundreds of GPa), cell adhesion was mechanically regulated by the Young's modulus of the underlying substrate when the thickness of the PLLA nanosheet was tens of nanometers. Modulation of the stiffness of the polymeric nanosheet by utilizing a rigid underlying material will allow the constitution of a unique cell culture environment.


Assuntos
Ácido Láctico/química , Ácido Láctico/metabolismo , Nanoestruturas , Polímeros/química , Polímeros/metabolismo , Animais , Adesão Celular , Fenômenos Mecânicos , Metais/química , Miócitos Cardíacos/citologia , Poliésteres , Ratos , Dióxido de Silício/química , Propriedades de Superfície
15.
Langmuir ; 27(9): 5589-95, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21456538

RESUMO

Freely suspended nanocomposite thin films based on soft polymers and functional nanostructures have been widely investigated for their potential application as active elements in microdevices. However, most studies are focused on the preparation of nanofilms composed of polyelectrolytes and charged colloidal particles. Here, a new technique for the preparation of poly(l-lactic acid) free-standing nanofilms embeddidng superparamagnetic iron oxide nanoparticles is presented. The fabrication process, based on a spin-coating deposition approach, is described, and the influence of each production parameter on the morphology and magnetic properties of the final structure is investigated. Superparamagnetic free-standing nanofilms were obtained, as evidenced by a magnetization hysteresis measurement performed with a superconducting quantum interference device (SQUID). Nanofilm surface morphology and thickness were evaluated by atomic force microscopy (AFM), and the nanoparticle dispersion inside the composites was investigated by transmission electron microscopy (TEM). These nanofilms, composed of a biodegradable polyester and remotely controllable by external magnetic fields, are promising candidates for many potential applications in the biomedical field.


Assuntos
Compostos Férricos/química , Ácido Láctico/química , Magnetismo , Nanocompostos/química , Nanopartículas/química , Nanotecnologia/métodos , Polímeros/química , Microscopia de Força Atômica , Poliésteres , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...