Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(20): 11401-11414, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-35944903

RESUMO

Current therapies for Duchenne muscular dystrophy (DMD) use phosphorodiamidate morpholino oligomers (PMO) to induce exon skipping in the dystrophin pre-mRNA, enabling the translation of a shortened but functional dystrophin protein. This strategy has been hampered by insufficient delivery of PMO to cardiac and skeletal muscle. To overcome these limitations, we developed the FORCETM platform consisting of an antigen-binding fragment, which binds the transferrin receptor 1, conjugated to an oligonucleotide. We demonstrate that a single dose of the mouse-specific FORCE-M23D conjugate enhances muscle delivery of exon skipping PMO (M23D) in mdx mice, achieving dose-dependent and robust exon skipping and durable dystrophin restoration. FORCE-M23D-induced dystrophin expression reached peaks of 51%, 72%, 62%, 90% and 77%, of wild-type levels in quadriceps, tibialis anterior, gastrocnemius, diaphragm, and heart, respectively, with a single 30 mg/kg PMO-equivalent dose. The shortened dystrophin localized to the sarcolemma, indicating expression of a functional protein. Conversely, a single 30 mg/kg dose of unconjugated M23D displayed poor muscle delivery resulting in marginal levels of exon skipping and dystrophin expression. Importantly, FORCE-M23D treatment resulted in improved functional outcomes compared with administration of unconjugated M23D. Our results suggest that FORCE conjugates are a potentially effective approach for the treatment of DMD.


The biggest problem confronting oligonucleotide therapeutics is a lack of compounds capable of targeting compounds to diseased tissues. This paper reports a major advance targeting the transferrin receptor to increase the delivery of morpholine oligomers to muscle cells in vivo. This work suggests the possibility for improved treatments of muscular dystrophy and other diseases.


Assuntos
Distrofina , Éxons , Morfolinos , Distrofia Muscular de Duchenne , Oligonucleotídeos Antissenso , Animais , Camundongos , Distrofina/genética , Éxons/genética , Camundongos Endogâmicos mdx , Morfolinos/farmacologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/farmacologia , Receptores da Transferrina/genética
2.
Neurology ; 94(21): e2270-e2282, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32139505

RESUMO

OBJECTIVE: To report safety, pharmacokinetics, exon 53 skipping, and dystrophin expression in golodirsen-treated patients with Duchenne muscular dystrophy (DMD) amenable to exon 53 skipping. METHODS: Part 1 was a randomized, double-blind, placebo-controlled, 12-week dose titration of once-weekly golodirsen; part 2 is an ongoing, open-label evaluation. Safety and pharmacokinetics were primary and secondary objectives of part 1. Primary biological outcome measures of part 2 were blinded exon skipping and dystrophin protein production on muscle biopsies (baseline, week 48) evaluated, respectively, using reverse transcription PCR and Western blot and immunohistochemistry. RESULTS: Twelve patients were randomized to receive golodirsen (n = 8) or placebo (n = 4) in part 1. All from part 1 plus 13 additional patients received 30 mg/kg golodirsen in part 2. Safety findings were consistent with those previously observed in pediatric patients with DMD. Most of the study drug was excreted within 4 hours following administration. A significant increase in exon 53 skipping was associated with ∼16-fold increase over baseline in dystrophin protein expression at week 48, with a mean percent normal dystrophin protein standard of 1.019% (range, 0.09%-4.30%). Sarcolemmal localization of dystrophin was demonstrated by significantly increased dystrophin-positive fibers (week 48, p < 0.001) and a positive correlation (Spearman r = 0.663; p < 0.001) with dystrophin protein change from baseline, measured by Western blot and immunohistochemistry. CONCLUSION: Golodirsen was well-tolerated; muscle biopsies from golodirsen-treated patients showed increased exon 53 skipping, dystrophin production, and correct dystrophin sarcolemmal localization. CLINICALTRIALSGOV IDENTIFIER: NCT02310906. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that golodirsen is safe and Class IV evidence that it induces exon skipping and novel dystrophin as confirmed by 3 different assays.


Assuntos
Distrofina/biossíntese , Distrofia Muscular de Duchenne/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Administração Intravenosa , Adolescente , Criança , Relação Dose-Resposta a Droga , Método Duplo-Cego , Distrofina/genética , Imunofluorescência , Humanos , Masculino , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/genética , Deleção de Sequência/efeitos dos fármacos
3.
J Biol Chem ; 292(25): 10613-10629, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28473466

RESUMO

Cardiomyocytes acquire their primary specialized function (contraction) before exiting the cell cycle. In this regard, proliferation and differentiation must be precisely coordinated for proper cardiac morphogenesis. Here, we have investigated the complex transcriptional mechanisms employed by cardiomyocytes to coordinate antagonistic cell-cycle and differentiation gene programs through the molecular dissection of the core cardiac transcription factor, MEF2. Knockdown of individual MEF2 proteins, MEF2A, -C, and -D, in primary neonatal cardiomyocytes resulted in radically distinct and opposite effects on cellular homeostasis and gene regulation. MEF2A and MEF2D were absolutely required for cardiomyocyte survival, whereas MEF2C, despite its major role in cardiac morphogenesis and direct reprogramming, was dispensable for this process. Inhibition of MEF2A or -D also resulted in the activation of cell-cycle genes and down-regulation of markers of terminal differentiation. In striking contrast, the regulation of cell-cycle and differentiation gene programs by MEF2C was antagonistic to that of MEF2A and -D. Computational analysis of regulatory regions from MEF2 isoform-dependent gene sets identified the Notch and Hedgehog signaling pathways as key determinants in coordinating MEF2 isoform-specific control of antagonistic gene programs. These results reveal that mammalian MEF2 family members have distinct transcriptional functions in cardiomyocytes and suggest that these differences are critical for proper development and maturation of the heart. Analysis of MEF2 isoform-specific function in neonatal cardiomyocytes has yielded insight into an unexpected transcriptional regulatory mechanism by which these specialized cells utilize homologous members of a core cardiac transcription factor to coordinate cell-cycle and differentiation gene programs.


Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Miócitos Cardíacos/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley
4.
J Cardiovasc Dev Dis ; 3(3)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27630998

RESUMO

Proper formation of the mammalian heart requires precise spatiotemporal transcriptional regulation of gene programs in cardiomyocytes. Sophisticated regulatory networks have evolved to not only integrate the activities of distinct transcription factors to control tissue-specific gene programs but also, in many instances, to incorporate multiple members within these transcription factor families to ensure accuracy and specificity in the system. Unsurprisingly, perturbations in this elaborate transcriptional circuitry can lead to severe cardiac abnormalities. Myocyte enhancer factor-2 (MEF2) transcription factor belongs to the evolutionarily conserved cardiac gene regulatory network. Given its central role in muscle gene regulation and its evolutionary conservation, MEF2 is considered one of only a few core cardiac transcription factors. In addition to its firmly established role as a differentiation factor, MEF2 regulates wide variety of, sometimes antagonistic, cellular processes such as cell survival and death. Vertebrate genomes encode multiple MEF2 family members thereby expanding the transcriptional potential of this core transcription factor in the heart. This review highlights the requirement of the MEF2 family and their orthologs in cardiac development in diverse animal model systems. Furthermore, we describe the recently characterized role of MEF2 in direct reprogramming and genome-wide cardiomyocyte gene regulation. A thorough understanding of the regulatory functions of the MEF2 family in cardiac development and cardiogenomics is required in order to develop effective therapeutic strategies to repair the diseased heart.

5.
J Biol Chem ; 290(40): 24367-80, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26294766

RESUMO

The cardiomyocyte cell cycle is a poorly understood process. Mammalian cardiomyocytes permanently withdraw from the cell cycle shortly after birth but can re-enter the cell cycle and proliferate when subjected to injury within a brief temporal window in the neonatal period. Thus, investigating the mechanisms of cell cycle regulation in neonatal cardiomyocytes may provide critical insight into the molecular events that prevent adult myocytes from proliferating in response to injury or stress. MEF2D is a key transcriptional mediator of pathological remodeling in the adult heart downstream of various stress-promoting insults. However, the specific gene programs regulated by MEF2D in cardiomyocytes are unknown. By performing genome-wide transcriptome analysis using MEF2D-depleted neonatal cardiomyocytes, we found a significant impairment in the cell cycle, characterized by the up-regulation of numerous positive cell cycle regulators. Expression of Pten, the primary negative regulator of PI3K/Akt, was significantly reduced in MEF2D-deficient cardiomyocytes and found to be a direct target gene of MEF2D. Consistent with these findings mutant cardiomyocytes showed activation of the PI3K/Akt survival pathway. Paradoxically, prolonged deficiency of MEF2D in neonatal cardiomyocytes did not trigger proliferation but instead resulted in programmed cell death, which is likely mediated by the E2F transcription factor. These results demonstrate a critical role for MEF2D in cell cycle regulation of post-mitotic, neonatal cardiomyocytes in vitro.


Assuntos
Miócitos Cardíacos/citologia , Animais , Animais Recém-Nascidos , Apoptose , Caspase 3/metabolismo , Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Fatores de Transcrição E2F/metabolismo , Fibroblastos/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/fisiologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Transcriptoma
7.
PLoS One ; 10(5): e0127641, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26011708

RESUMO

The myocyte enhancer factor 2 (MEF2) transcription factor requires interactions with co-factors for precise regulation of its target genes. Our lab previously reported that the mammalian MEF2A isoform regulates the cardiomyocyte costamere, a critical muscle-specific focal adhesion complex involved in contractility, through its transcriptional control of genes encoding proteins localized to this cytoskeletal structure. To further dissect the transcriptional mechanisms of costamere gene regulation and identify potential co-regulators of MEF2A, a bioinformatics analysis of transcription factor binding sites was performed using the proximal promoter regions of selected costamere genes. One of these predicted sites belongs to the early growth response (EGR) transcription factor family. The EGR1 isoform has been shown to be involved in a number of pathways in cardiovascular homeostasis and disease, making it an intriguing candidate MEF2 coregulator to further characterize. Here, we demonstrate that EGR1 interacts with MEF2A and is a potent and specific repressor of MEF2 transcriptional activity. Furthermore, we show that costamere gene expression in cardiomyocytes is dependent on EGR1 transcriptional activity. This study identifies a mechanism by which MEF2 activity can be modulated to ensure that costamere gene expression is maintained at levels commensurate with cardiomyocyte contractile activity.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fatores de Transcrição MEF2/metabolismo , Transcrição Gênica/genética , Ativação Transcricional , Animais , Biologia Computacional , Proteína 1 de Resposta de Crescimento Precoce/genética , Células HEK293 , Humanos , Fatores de Transcrição MEF2/genética , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Ratos
8.
J Biol Chem ; 290(2): 1256-68, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25416778

RESUMO

Skeletal muscle differentiation requires precisely coordinated transcriptional regulation of diverse gene programs that ultimately give rise to the specialized properties of this cell type. In Drosophila, this process is controlled, in part, by MEF2, the sole member of an evolutionarily conserved transcription factor family. By contrast, vertebrate MEF2 is encoded by four distinct genes, Mef2a, -b, -c, and -d, making it far more challenging to link this transcription factor to the regulation of specific muscle gene programs. Here, we have taken the first step in molecularly dissecting vertebrate MEF2 transcriptional function in skeletal muscle differentiation by depleting individual MEF2 proteins in myoblasts. Whereas MEF2A is absolutely required for proper myoblast differentiation, MEF2B, -C, and -D were found to be dispensable for this process. Furthermore, despite the extensive redundancy, we show that mammalian MEF2 proteins regulate a significant subset of nonoverlapping gene programs. These results suggest that individual MEF2 family members are able to recognize specific targets among the entire cohort of MEF2-regulated genes in the muscle genome. These findings provide opportunities to modulate the activity of MEF2 isoforms and their respective gene programs in skeletal muscle homeostasis and disease.


Assuntos
Diferenciação Celular/genética , Evolução Molecular , Fatores de Transcrição MEF2/biossíntese , Músculo Esquelético/crescimento & desenvolvimento , Isoformas de Proteínas/biossíntese , Animais , Células COS , Chlorocebus aethiops , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição MEF2/antagonistas & inibidores , Fatores de Transcrição MEF2/genética , Mamíferos/genética , Mamíferos/crescimento & desenvolvimento , Camundongos , Desenvolvimento Muscular/genética , Mioblastos/citologia , Mioblastos/metabolismo , Isoformas de Proteínas/genética
9.
PLoS One ; 9(1): e86048, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465863

RESUMO

Hsp90 inhibitors such as geldanamycin potently induce Hsp70 and reduce cytotoxicity due to α-synuclein expression, although their use has been limited due to toxicity, brain permeability, and drug design. We recently described the effects of a novel class of potent, small molecule Hsp90 inhibitors in cells overexpressing α-synuclein. Screening yielded several candidate compounds that significantly reduced α-synuclein oligomer formation and cytotoxicity associated with Hsp70 induction. In this study we examined whether chronic treatment with candidate Hsp90 inhibitors could protect against α-synuclein toxicity in a rat model of parkinsonism. Rats were injected unilaterally in the substantia nigra with AAV8 expressing human α-synuclein and then treated with drug for approximately 8 weeks by oral gavage. Chronic treatment with SNX-0723 or the more potent, SNX-9114 failed to reduce dopaminergic toxicity in the substantia nigra compared to vehicle. However, SNX-9114 significantly increased striatal dopamine content suggesting a positive neuromodulatory effect on striatal terminals. Treatment was generally well tolerated, but higher dose SNX-0723 (6-10 mg/kg) resulted in systemic toxicity, weight loss, and early death. Although still limited by potential toxicity, Hsp90 inhibitors tested herein demonstrate oral efficacy and possible beneficial effects on dopamine production in a vertebrate model of parkinsonism that warrant further study.


Assuntos
Benzamidas/uso terapêutico , Dopamina/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Indóis/uso terapêutico , Neostriado/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Pirimidinas/uso terapêutico , alfa-Sinucleína/metabolismo , ortoaminobenzoatos/uso terapêutico , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Neostriado/metabolismo , Neostriado/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia
10.
Neurodegener Dis ; 12(4): 189-98, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23467193

RESUMO

BACKGROUND: Increasing evidence suggests that urate may play an important role in neurodegenerative disease. In Parkinson's disease (PD) higher, but still normal, levels of blood and cerebrospinal fluid urate have been associated with a lower rate of disease progression. OBJECTIVE: We explored the hypothesis that lower levels of urate and its purine precursors in brain may be associated with PD and related neurodegenerative disorders, including Alzheimer's disease (AD) and Lewy body dementia (DLB). METHODS: Human postmortem brain tissues were obtained from PD, AD, and DLB patients and non-neurodegenerative disease controls. We measured urate and other purine pathway analytes in the frontal and temporal cortex, striatum, and cerebellum, using high-performance liquid chromatography with electrochemical and ultraviolet detection. RESULTS: Age was well-matched among groups. Mean postmortem interval for samples was 16.3 ± 9.9 h. Urate levels in cortical and striatal tissue trended lower in PD and AD compared to controls in males only. These findings correlated with increased urate in male versus female control tissues. By contrast, in DLB urate levels were significantly elevated relative to PD and AD. Measurement of urate precursors suggested a decrease in xanthine in PD compared to AD in females only, and relative increases in inosine and adenosine in DLB and AD samples among males. Xanthine and hypoxanthine were more concentrated in striatal tissue than in other brain regions. CONCLUSIONS: Though limited in sample size, these findings lend support to the inverse association between urate levels and PD, as well as possibly AD. The finding of increased urate in DLB brain tissue is novel and warrants further study.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/metabolismo , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia , Purinas/metabolismo , Ácido Úrico/metabolismo , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Humanos , Inosina/metabolismo , Masculino , Mudanças Depois da Morte , Análise de Regressão , Fatores Sexuais , Transdução de Sinais/fisiologia , Xantina
11.
Proc Natl Acad Sci U S A ; 110(1): 300-5, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248282

RESUMO

Urate is the end product of purine metabolism in humans, owing to the evolutionary disruption of the gene encoding urate oxidase (UOx). Elevated urate can cause gout and urolithiasis and is associated with cardiovascular and other diseases. However, urate also possesses antioxidant and neuroprotective properties. Recent convergence of epidemiological and clinical data has identified urate as a predictor of both reduced risk and favorable progression of Parkinson's disease (PD). In rodents, functional UOx catalyzes urate oxidation to allantoin. We found that UOx KO mice with a constitutive mutation of the gene have increased concentrations of brain urate. By contrast, UOx transgenic (Tg) mice overexpressing the enzyme have reduced brain urate concentrations. Effects of the complementary UOx manipulations were assessed in a mouse intrastriatal 6-hydroxydopamine (6-OHDA) model of hemiparkinsonism. UOx KO mice exhibit attenuated toxic effects of 6-OHDA on nigral dopaminergic cell counts, striatal dopamine content, and rotational behavior. Conversely, Tg overexpression of UOx exacerbates these morphological, neurochemical, and functional lesions of the dopaminergic nigrostriatal pathway. Together our data support a neuroprotective role of endogenous urate in dopaminergic neurons and strengthen the rationale for developing urate-elevating strategies as potential disease-modifying therapy for PD.


Assuntos
Encéfalo/metabolismo , Transtornos Parkinsonianos/metabolismo , Urato Oxidase/metabolismo , Ácido Úrico/metabolismo , Alantoína/metabolismo , Análise de Variância , Animais , Western Blotting , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Movimento/fisiologia , Oxidopamina/toxicidade , Urato Oxidase/genética
12.
Biomed Chromatogr ; 27(1): 122-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22674671

RESUMO

The purine metabolic pathway has been implicated in neurodegeneration and neuroprotection. High-performance liquid chromatography (HPLC) is widely used to determine purines and metabolites. However, methods for analysis of multiple purines in a single analysis have not been standardized, especially in brain tissue. We report the development and validation of a reversed-phase HPLC method combining electrochemical and UV detection after a short gradient run to measure seven purine metabolites (adenosine, guanosine, inosine, guanine, hypoxanthine, xanthine and urate) from the entire purine metabolic pathway. The limit of detection (LoD) for each analyte was determined. The LoD using UV absorption was 0.001 mg/dL for hypoxanthine (Hyp), inosine (Ino), guanosine (Guo) and adenosine (Ado), and those using coulometric electrodes were 0.001 mg/dL for guanine (Gua), 0.0001 mg/dL for urate (UA) and 0.0005 mg/dL for xanthine (Xan). The intra- and inter-day coefficient of variance was generally <8%. Using this method, we determined basal levels of these metabolites in mouse brain and serum, as well as in post-mortem human brain. Peak identities were confirmed by enzyme degradation. Spike recovery was performed to assess accuracy. All recoveries fell within 80-120%. Our HPLC method provides a sensitive, rapid, reproducible and low-cost method for determining multiple purine metabolites in a single analysis in serum and brain specimens.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Corpo Estriado/química , Purinas/análise , Animais , Técnicas Eletroquímicas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Purinas/sangue , Purinas/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta
13.
J Neurochem ; 123(1): 172-81, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22671773

RESUMO

Urate is the end product of purine metabolism and a major antioxidant circulating in humans. Recent data link higher levels of urate with a reduced risk of developing Parkinson's disease and with a slower rate of its progression. In this study, we investigated the role of astrocytes in urate-induced protection of dopaminergic cells in a cellular model of Parkinson's disease. In mixed cultures of dopaminergic cells and astrocytes oxidative stress-induced cell death and protein damage were reduced by urate. By contrast, urate was not protective in pure dopaminergic cell cultures. Physical contact between dopaminergic cells and astrocytes was not required for astrocyte-dependent rescue as shown by conditioned medium experiments. Urate accumulation in dopaminergic cells and astrocytes was blocked by pharmacological inhibitors of urate transporters expressed differentially in these cells. The ability of a urate transport blocker to prevent urate accumulation into astroglial (but not dopaminergic) cells predicted its ability to prevent dopaminergic cell death. Transgenic expression of uricase reduced urate accumulation in astrocytes and attenuated the protective influence of urate on dopaminergic cells. These data indicate that urate might act within astrocytes to trigger release of molecule(s) that are protective for dopaminergic cells.


Assuntos
Antioxidantes/metabolismo , Antioxidantes/farmacologia , Astrócitos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Peróxido de Hidrogênio/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nitritos/metabolismo , Oxidantes/toxicidade , Carbonilação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Urato Oxidase/genética
14.
PLoS One ; 7(5): e37331, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606360

RESUMO

Urate is a major antioxidant as well as the enzymatic end product of purine metabolism in humans. Higher levels correlate with a reduced risk of developing Parkinson's disease (PD) and with a slower rate of PD progression. In this study we investigated the effects of modulating intracellular urate concentration on 1-methyl-4-phenyl-pyridinium (MPP(+))-induced degeneration of dopaminergic neurons in cultures of mouse ventral mesencephalon prepared to contain low (neuron-enriched cultures) or high (neuron-glial cultures) percentage of astrocytes. Urate, added to the cultures 24 hours before and during treatment with MPP(+), attenuated the loss of dopaminergic neurons in neuron-enriched cultures and fully prevented their loss and atrophy in neuron-astrocyte cultures. Exogenous urate was found to increase intracellular urate content in cortical neuronal cultures. To assess the effect of reducing cellular urate content on MPP(+)-induced toxicity, mesencephalic neurons were prepared from mice over-expressing urate oxidase (UOx). Transgenic UOx expression decreased endogenous urate content both in neurons and astrocytes. Dopaminergic neurons expressing UOx were more susceptible to MPP(+) in mesencephalic neuron-enriched cultures and to a greater extent in mesencephalic neuron-astrocyte cultures. Our findings correlate intracellular urate content in dopaminergic neurons with their toxin resistance in a cellular model of PD and suggest a facilitative role for astrocytes in the neuroprotective effect of urate.


Assuntos
Transtornos Parkinsonianos/metabolismo , Ácido Úrico/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Degeneração Neural/prevenção & controle , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Técnicas de Cultura de Tecidos , Urato Oxidase/genética , Urato Oxidase/metabolismo , Ácido Úrico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...