Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584326

RESUMO

Meiotic crossovers (COs) generate genetic diversity and are crucial for viable gamete production. Plant COs are typically limited to 1-3 per chromosome pair, constraining the development of improved varieties, which in wheat is exacerbated by an extreme distal localisation bias. Advances in wheat genomics and related technologies provide new opportunities to investigate, and possibly modify, recombination in this important crop species. Here, we investigate the disruption of FIGL1 in tetraploid and hexaploid wheat as a potential strategy for modifying CO frequency/position. We analysed figl1 mutants and virus-induced gene silencing lines cytogenetically. Genetic mapping was performed in the hexaploid. FIGL1 prevents abnormal meiotic chromosome associations/fragmentation in both ploidies. It suppresses class II COs in the tetraploid such that CO/chiasma frequency increased 2.1-fold in a figl1 msh5 quadruple mutant compared with a msh5 double mutant. It does not appear to affect class I COs based on HEI10 foci counts in a hexaploid figl1 triple mutant. Genetic mapping in the triple mutant suggested no significant overall increase in total recombination across examined intervals but revealed large increases in specific individual intervals. Notably, the tetraploid figl1 double mutant was sterile but the hexaploid triple mutant was moderately fertile, indicating potential utility for wheat breeding.

2.
PhytoKeys ; 220: 83-108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251615

RESUMO

Japanese knotweed (Reynoutriajaponica) is native to East Asia, but has been introduced to the West where it is a noxious invasive weed. Taxonomically, Japanese knotweed is placed within subtribe Reynoutriinae (Polygonaceae), which also contains the austral genus Muehlenbeckia (incl. Homalocladium) and north temperate Fallopia. In the current study, we conducted a phylogenetic analysis using sequence data from six markers, two nuclear (LEAFYi2, ITS) and four plastid (matK, rbcL, rps16-trnK and trnL-trnF) to further resolve the evolutionary relationships within this group, using the widest sampling of in-group taxa to date. The results of this analysis confirmed that subtribe Reynoutriinae is a monophyletic group, characterised by the presence of extra-floral, nectariferous glands at the base of leaf petioles. Within the subtribe, four main clades were identified: Reynoutria, Fallopiasect.Parogonum, Fallopia s.s. (including Fallopia sects. Fallopia and Sarmentosae) and Muehlenbeckia. The Fallopia s.s. and Muehlenbeckia clades are sister to one another, while the Fallopiasect.Parogonum clade is immediately basal to them and Reynoutria basal to all three. Fallopia, as currently circumscribed, is paraphyletic as Muehlenbeckia is nested within it. To resolve this, we propose that species of Fallopiasect.Parogonum should be treated as a new genus, Parogonum (Haraldson) Desjardins & J.P.Bailey, gen. et stat. nov. Within Reynoutria, the allied specific and infraspecific taxa that fall under the name Japanese knotweed s.l. form a monophyletic group and their taxonomic status is discussed.

3.
Biochem Soc Trans ; 50(4): 1179-1186, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35901450

RESUMO

Wheat is a major cereal crop that possesses a large allopolyploid genome formed through hybridisation of tetraploid and diploid progenitors. During meiosis, crossovers (COs) are constrained in number to 1-3 per chromosome pair that are predominantly located towards the chromosome ends. This reduces the probability of advantageous traits recombining onto the same chromosome, thus limiting breeding. Therefore, understanding the underlying factors controlling meiotic recombination may provide strategies to unlock the genetic potential in wheat. In this mini-review, we will discuss the factors associated with restricted CO formation in wheat, such as timing of meiotic events, chromatin organisation, pre-meiotic DNA replication and dosage of CO genes, as a means to modulate recombination.


Assuntos
Troca Genética , Triticum , Cromossomos , Recombinação Homóloga , Meiose , Triticum/genética
4.
Nat Commun ; 13(1): 3644, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752733

RESUMO

FANCM suppresses crossovers in plants by unwinding recombination intermediates. In wheat, crossovers are skewed toward the chromosome ends, thus limiting generation of novel allelic combinations. Here, we observe that FANCM maintains the obligate crossover in tetraploid and hexaploid wheat, thus ensuring that every chromosome pair exhibits at least one crossover, by localizing class I crossover protein HEI10 at pachytene. FANCM also suppresses class II crossovers that increased 2.6-fold in fancm msh5 quadruple mutants. These data are consistent with a role for FANCM in second-end capture of class I designated crossover sites, whilst FANCM is also required to promote formation of non-crossovers. In hexaploid wheat, genetic mapping reveals that crossovers increase by 31% in fancm compared to wild type, indicating that fancm could be an effective tool to accelerate breeding. Crossover rate differences in fancm correlate with wild type crossover distributions, suggesting that chromatin may influence the recombination landscape in similar ways in both wild type and fancm.


Assuntos
Troca Genética , Triticum , Meiose/genética , Melhoramento Vegetal , Triticum/genética
5.
Plant Physiol ; 183(4): 1545-1558, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32527734

RESUMO

Crossovers (COs) ensure accurate chromosome segregation during meiosis while creating novel allelic combinations. Here, we show that allotetraploid (AABB) durum wheat (Triticum turgidum ssp. durum) utilizes two pathways of meiotic recombination. The class I pathway requires MSH4 and MSH5 (MutSγ) to maintain the obligate CO/chiasma and accounts for ∼85% of meiotic COs, whereas the residual ∼15% are consistent with the class II CO pathway. Class I and class II chiasmata are skewed toward the chromosome ends, but class II chiasmata are significantly more distal than class I chiasmata. Chiasma distribution does not reflect the abundance of double-strand breaks, detected by proxy as RAD51 foci at leptotene, but only ∼2.3% of these sites mature into chiasmata. MutSγ maintains the obligate chiasma despite a 5.4-kb deletion in MSH5B rendering it nonfunctional, which occurred early in the evolution of tetraploid wheat and was then domesticated into hexaploid (AABBDD) common wheat (Triticum aestivum), as well as an 8-kb deletion in MSH4D in hexaploid wheat, predicted to create a nonfunctional pseudogene. Stepwise loss of MSH5B and MSH4D following hybridization and whole-genome duplication may have occurred due to gene redundancy (as functional copies of MSH5A, MSH4A, and MSH4B are still present in the tetraploid and MSH5A, MSH5D, MSH4A, and MSH4B are present in the hexaploid) or as an adaptation to modulate recombination in allopolyploid wheat.


Assuntos
Triticum/genética , Segregação de Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Meiose/genética , Meiose/fisiologia , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...