Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell Rep Methods ; 3(9): 100573, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37751695

RESUMO

Spatially resolved transcriptomics is revolutionizing our understanding of complex tissues, but scaling these approaches to multiple tissue sections and three-dimensional tissue reconstruction remains challenging and cost prohibitive. In this work, we present a low-cost strategy for manufacturing molecularly double-barcoded DNA arrays, enabling large-scale spatially resolved transcriptomics studies. We applied this technique to spatially resolve gene expression in several human brain organoids, including the reconstruction of a three-dimensional view from multiple consecutive sections, revealing gene expression heterogeneity throughout the tissue.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Transcriptoma/genética , Encéfalo/diagnóstico por imagem , Comércio , Organoides
2.
Front Mol Biosci ; 10: 1164779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214335

RESUMO

The presence of prion infectivity in the blood of patients affected by variant Creutzfeldt-Jakob disease (v-CJD), the human prion disease linked to the bovine spongiform encephalopathy (BSE), poses the risk of inter-human transmission of this fatal prion disease through transfusion. In the frame of various experiments, we have previously described that several cynomolgus macaques experimentally exposed to prion-contaminated blood products developed c-BSE/v-CJD, but the vast majority of them developed an unexpected, fatal disease phenotype focused on spinal cord involvement, which does not fulfill the classical diagnostic criteria of v-CJD. Here, we show that extensive analyses with current conventional techniques failed to detect any accumulation of abnormal prion protein (PrPv-CJD) in the CNS of these myelopathic animals, i.e., the biomarker considered responsible for neuronal death and subsequent clinical signs in prion diseases. Conversely, in the spinal cord of these myelopathic primates, we observed an alteration of their physiological cellular PrP pattern: PrP was not detectable under its full-length classical expression but mainly under its physiological terminal-truncated C1 fragment. This observed disappearance of the N-terminal fragment of cellular PrP at the level of the lesions may provide the first experimental evidence of a link between loss of function of the cellular prion protein and disease onset. This original prion-induced myelopathic syndrome suggests an unexpected wide extension in the field of prion diseases that is so far limited to pathologies associated with abnormal changes of the cellular PrP to highly structured conformations.

3.
Cell Tissue Res ; 392(1): 7-20, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35661921

RESUMO

The fascinating history of prion diseases is intimately linked to the use of nonhuman primates as experimental models, which brought so fundamental and founding information about transmissibility, pathogenesis, and resistance of prions. These models are still of crucial need for risk assessment of human health and may contribute to pave a new way towards the moving field of prion-like entities which now includes the main human neurodegenerative diseases (especially Alzheimer's and Parkinson's diseases).


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Doenças Priônicas , Príons , Animais , Humanos , Primatas
4.
Acta Neuropathol Commun ; 9(1): 145, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454616

RESUMO

Treatment with human pituitary-derived growth hormone (hGH) was responsible for a significant proportion of iatrogenic Creutzfeldt-Jakob disease (iCJD) cases. France and the UK experienced the largest case numbers of hGH-iCJD, with 122 and 81 cases respectively. Differences in the frequency of the three PRNP codon 129 polymorphisms (MM, MV and VV) and the estimated incubation periods associated with each of these genotypes in the French and the UK hGH-iCJD cohorts led to the suggestion that the prion strains responsible for these two hGH-iCJD cohorts were different. In this study, we characterized the prion strains responsible for hGH-iCJD cases originating from UK (n = 11) and France (n = 11) using human PrP expressing mouse models. The cases included PRNP MM, MV and VV genotypes from both countries. UK and French sporadic CJD (sCJD) cases were included as controls. The prion strains identified following inoculation with hGH-iCJD homogenates corresponded to the two most frequently observed sCJD prion strains (M1CJD and V2CJD). However, in clear contradiction to the initial hypothesis, the prion strains that were identified in the UK and the French hGH-iCJD cases were not radically different. In the vast majority of the cases originating from both countries, the V2CJD strain or a mixture of M1CJD + V2CJD strains were identified. These data strongly support the contention that the differences in the epidemiological and genetic profiles observed in the UK and France hGH-iCJD cohorts cannot be attributed only to the transmission of different prion strains.


Assuntos
Síndrome de Creutzfeldt-Jakob/epidemiologia , Síndrome de Creutzfeldt-Jakob/patologia , Encefalopatia Espongiforme Bovina/epidemiologia , Encefalopatia Espongiforme Bovina/patologia , Hormônio do Crescimento Humano/efeitos adversos , Proteínas PrPSc/efeitos adversos , Adulto , Animais , Estudos de Coortes , Síndrome de Creutzfeldt-Jakob/transmissão , Encefalopatia Espongiforme Bovina/transmissão , Feminino , França/epidemiologia , Hormônio do Crescimento Humano/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas PrPSc/administração & dosagem , Proteínas PrPSc/isolamento & purificação , Reino Unido/epidemiologia
6.
Front Cell Neurosci ; 14: 14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116560

RESUMO

Human brain organoids (mini-brains) consist of self-organized three-dimensional (3D) neural tissue which can be derived from reprogrammed adult cells and maintained for months in culture. These 3D structures manifest substantial potential for the modeling of neurodegenerative diseases and pave the way for personalized medicine. However, as these 3D brain models can express the whole human genetic complexity, it is critical to have access to isogenic mini-brains that only differ in specific and controlled genetic variables. Genetic engineering based on retroviral vectors is incompatible with the long-term modeling needed here and implies a risk of random integration while methods using CRISPR-Cas9 are still too complex to adapt to stem cells. We demonstrate in this study that our strategy which relies on an episomal plasmid vector derived from the Epstein-Barr virus (EBV) offers a simple and robust approach, avoiding the remaining caveats of mini-brain models. For this proof-of-concept, we used a normal tau protein with a fluorescent tag and a mutant genetic form (P301S) leading to Fronto-Temporal Dementia. Isogenic cell lines were obtained which were stable for more than 30 passages expressing either form. We show that the presence of the plasmid in the cells does not interfere with the mini-brain differentiation protocol and obtain the development of a pathologically relevant phenotype in cerebral organoids, with pathological hyperphosphorylation of the tau protein. Such a simple and versatile genetic strategy opens up the full potential of human organoids to contribute to disease modeling, personalized medicine and testing of therapeutics.

7.
Sci Rep ; 9(1): 16310, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690750

RESUMO

The development of effective central nervous system (CNS) drugs has been hampered by the lack of robust strategies to mimic the blood-brain barrier (BBB) and cerebrovascular impairments in vitro. Recent technological advancements in BBB modeling using induced pluripotent stem cells (iPSCs) allowed to overcome some of these obstacles, nonetheless the pertinence for their use in drug permeation study remains to be established. This mandatory information requires a cross comparison of in vitro and in vivo pharmacokinetic data in the same species to avoid failure in late clinical drug development. Here, we measured the BBB permeabilities of 8 clinical positron emission tomography (PET) radioligands with known pharmacokinetic parameters in human brain in vivo with a newly developed in vitro iPSC-based human BBB (iPSC-hBBB) model. Our findings showed a good correlation between in vitro and in vivo drug brain permeability (R2 = 0.83; P = 0.008) which contrasted with the limited correlation between in vitro apparent permeability for a set of 18 CNS/non-CNS compounds using the in vitro iPSCs-hBBB model and drug physicochemical properties. Our data suggest that the iPSC-hBBB model can be integrated in a flow scheme of CNS drug screening and potentially used to study species differences in BBB permeation.


Assuntos
Barreira Hematoencefálica/química , Encéfalo/diagnóstico por imagem , Células-Tronco Pluripotentes Induzidas/citologia , Neuroglia/citologia , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Encéfalo/metabolismo , Diferenciação Celular , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Modelos Biológicos , Neuroglia/metabolismo , Permeabilidade , Tomografia por Emissão de Pósitrons , Estudo de Prova de Conceito , Ratos
8.
Sci Rep ; 9(1): 15699, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666632

RESUMO

Cynomolgus macaque has been used for the evaluation of the zoonotic potential of prion diseases, especially for classical-Bovine Spongiform Encephalopathy (classical-BSE) infectious agent. PrP amino acid sequence is considered to play a key role in the susceptibility to prion strains and only one amino acid change may alter this susceptibility. Macaque and human-PrP sequences have only nine amino acid differences, but the effect of these amino acid changes in the susceptibility to dissimilar prion strains is unknown. In this work, the transmissibility of a panel of different prions from several species was compared in transgenic mice expressing either macaque-PrPC (TgMac) or human-PrPC (Hu-Tg340). Similarities in the transmissibility of most prion strains were observed suggesting that macaque is an adequate model for the evaluation of human susceptibility to most of the prion strains tested. Interestingly, TgMac were more susceptible to classical-BSE strain infection than Hu-Tg340. This differential susceptibility to classical-BSE transmission should be taken into account for the interpretation of the results obtained in macaques. It could notably explain why the macaque model turned out to be so efficient (worst case model) until now to model human situation towards classical-BSE despite the limited number of animals inoculated in the laboratory experiments.


Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Encefalopatia Espongiforme Bovina/genética , Doenças Priônicas/genética , Proteínas Priônicas/genética , Sequência de Aminoácidos/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Modelos Animais de Doenças , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/patologia , Predisposição Genética para Doença , Humanos , Macaca , Macaca fascicularis/genética , Camundongos , Camundongos Transgênicos , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Proteínas Priônicas/metabolismo
9.
Acta Neuropathol Commun ; 7(1): 126, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31481130

RESUMO

Alzheimer's disease is characterized by cognitive alterations, cerebral atrophy and neuropathological lesions including neuronal loss, accumulation of misfolded and aggregated ß-amyloid peptides (Aß) and tau proteins. Iatrogenic induction of Aß is suspected in patients exposed to pituitary-derived hormones, dural grafts, or surgical instruments, presumably contaminated with Aß. Induction of Aß and tau lesions has been demonstrated in transgenic mice after contamination with Alzheimer's disease brain homogenates, with very limited functional consequences. Unlike rodents, primates naturally express Aß or tau under normal conditions and attempts to transmit Alzheimer pathology to primates have been made for decades. However, none of earlier studies performed any detailed functional assessments. For the first time we demonstrate long term memory and learning impairments in a non-human primate (Microcebus murinus) following intracerebral injections with Alzheimer human brain extracts. Animals inoculated with Alzheimer brain homogenates displayed progressive cognitive impairments (clinical tests assessing cognitive and motor functions), modifications of neuronal activity (detected by electroencephalography), widespread and progressive cerebral atrophy (in vivo MRI assessing cerebral volume loss using automated voxel-based analysis), neuronal loss in the hippocampus and entorhinal cortex (post mortem stereology). They displayed parenchymal and vascular Aß depositions and tau lesions for some of them, in regions close to the inoculation sites. Although these lesions were sparse, they were never detected in control animals. Tau-positive animals had the lowest performances in a memory task and displayed the greatest neuronal loss. Our study is timely and important as it is the first one to highlight neuronal and clinical dysfunction following inoculation of Alzheimer's disease brain homogenates in a primate. Clinical signs in a chronic disease such as Alzheimer take a long time to be detectable. Documentation of clinical deterioration and/or dysfunction following intracerebral inoculations with Alzheimer human brain extracts could lead to important new insights about Alzheimer initiation processes.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Encefalopatias/diagnóstico por imagem , Encefalopatias/genética , Encéfalo/diagnóstico por imagem , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Encefalopatias/patologia , Cheirogaleidae , Eletroencefalografia/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Transgênicos , Primatas , Especificidade da Espécie
10.
PLoS One ; 13(12): e0209150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30557391

RESUMO

Human mini-brains (MB) are cerebral organoids that recapitulate in part the complexity of the human brain in a unique three-dimensional in vitro model, yielding discrete brain regions reminiscent of the cerebral cortex. Specific proteins linked to neurodegenerative disorders are physiologically expressed in MBs, such as APP-derived amyloids (Aß), whose physiological and pathological roles and interactions with other proteins are not well established in humans. Here, we demonstrate that neuroectodermal organoids can be used to study the Aß accumulation implicated in Alzheimer's disease (AD). To enhance the process of protein secretion and accumulation, we adopted a chemical strategy of induction to modulate post-translational pathways of APP using an Amyloid-ß Forty-Two Inducer named Aftin-5. Secreted, soluble Aß fragment concentrations were analyzed in MB-conditioned media. An increase in the Aß42 fragment secretion was observed as was an increased Aß42/Aß40 ratio after drug treatment, which is consistent with the pathological-like phenotypes described in vivo in transgenic animal models and in vitro in induced pluripotent stem cell-derived neural cultures obtained from AD patients. Notably in this context we observe time-dependent Aß accumulation, which differs from protein accumulation occurring after treatment. We show that mini-brains obtained from a non-AD control cell line are responsive to chemical compound induction, producing a shift of physiological Aß concentrations, suggesting that this model can be used to identify environmental agents that may initiate the cascade of events ultimately leading to sporadic AD. Increases in both Aß oligomers and their target, the cellular prion protein (PrPC), support the possibility of using MBs to further understand the pathophysiological role that underlies their interaction in a human model. Finally, the potential application of MBs for modeling age-associated phenotypes and the study of neurological disorders is confirmed.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/biossíntese , Encéfalo/patologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Fragmentos de Peptídeos/biossíntese , Fenótipo , Bibliotecas de Moléculas Pequenas/farmacologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteínas PrPC/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína/efeitos dos fármacos
11.
Prion ; : 1-8, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30080439

RESUMO

The recently reevaluated high prevalence of healthy carriers (1/2,000 in UK) of variant Creutzfeldt-Jakob Disease (v-CJD), whose blood might be infectious, suggests that the evolution of this prion disease might not be under full control as expected. After experimental transfusion of macaques and conventional mice with blood derived from v-CJD exposed (human and animal) individuals, we confirmed in these both models the transmissibility of v-CJD, but we also observed unexpected neurological syndromes transmissible by transfusion: despite their prion etiology confirmed through transmission experiments, these original cases would escape classical prion diagnosis, notably in the absence of detectable abnormal PrP with current techniques. It is noteworthy that macaques developed an original, yet undescribed myelopathic syndrome associating demyelination and pseudo-necrotic lesions of spinal cord, brainstem and optical tract without affecting encephalon, which is rather evocative of spinal cord disease than prion disease in human medicine. These observations strongly suggest that the spectrum of human prion diseases may extend the current field restricted to the phenotypes associated to protease-resistant PrP, and may notably include spinal cord diseases.

12.
Front Neurosci ; 12: 8, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403351

RESUMO

Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively) and in different genetic forms of prion diseases (gPrD) in comparison to Alzheimer's disease (AD) subjects and age-matched controls. Methods: Total RNA was obtained from the frontal cortex of vCJD (n = 20), iCJD (n = 11), sCJD (n = 23), gPrD (n = 30), and AD (n = 14) patients and age-matched controls (n = 30). RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis. Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level. Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue)-together with specific molecular and conformational features of the pathological agent of the disease-seem to dictate the peculiar hemoglobin dysregulation found in prion and non-prion neurodegenerative disorders. In addition, these results suggest that gene expression of HBB and HBA1/2 in brain tissue is differentially affected by distinct prion and prion-like aggregating protein strains. Validation of these results in more accessible tissues could prompt the development of novel diagnostic tests for neurodegenerative disorders.

13.
Nat Commun ; 8(1): 1268, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097653

RESUMO

Exposure of human populations to bovine spongiform encephalopathy through contaminated food has resulted in <250 cases of variant Creutzfeldt-Jakob disease (vCJD). However, more than 99% of vCJD infections could have remained silent suggesting a long-term risk of secondary transmission particularly through blood. Here, we present experimental evidence that transfusion in mice and non-human primates of blood products from symptomatic and non-symptomatic infected donors induces not only vCJD, but also a different class of neurological impairments. These impairments can all be retransmitted to mice with a pathognomonic accumulation of abnormal prion protein, thus expanding the spectrum of known prion diseases. Our findings suggest that the intravenous route promotes propagation of masked prion variants according to different mechanisms involved in peripheral replication.


Assuntos
Transfusão de Sangue , Síndrome de Creutzfeldt-Jakob/transmissão , Reação Transfusional , Animais , Doenças Assintomáticas , Doadores de Sangue , Bovinos , Síndrome de Creutzfeldt-Jakob/metabolismo , Encefalopatia Espongiforme Bovina/transmissão , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Doenças Priônicas/classificação , Doenças Priônicas/metabolismo , Doenças Priônicas/transmissão , Proteínas Priônicas/metabolismo
14.
Sci Rep ; 5: 11573, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26123044

RESUMO

Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.


Assuntos
Scrapie/patologia , Animais , Bovinos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Humanos , Macaca fascicularis , Masculino , Camundongos , Príons/metabolismo , Scrapie/transmissão , Lobo Temporal/patologia , Fatores de Tempo
15.
Transfusion ; 55(6): 1231-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25647476

RESUMO

BACKGROUND: Analysis of archived appendix samples reveals that one in 2000 individuals in the United Kingdom may carry the infectious prion protein associated with variant Creutzfeldt-Jakob disease (vCJD), raising questions about the risk of transfusion transmission from apparently healthy carriers. Blood leukoreduction shows limited efficiency against prions. Therefore, in absence of antemortem diagnostic tests, prion removal filters, including the P-Capt filter were designed to improve blood transfusion safety. STUDY DESIGN AND METHODS: We evaluated the performances of two filters, the P-Capt and one prototype (PMC#005), with blood-borne infectivity in two independent experiments. Blood was drawn twice from prion-infected macaques. Corresponding RBCCs were prepared according to two different procedures: in Study A, the leukoreduction step was followed by the filtration through the P-Capt. In Study B, the leukoreduction and prion removal were performed simultaneously through the PMC#005. For each study, two groups of three animals were transfused twice with samples before or after filtration. RESULTS: Among the six macaques transfused with nonfiltered samples, five developed neurologic signs but only four exhibited peripheral detectable protease-resistant prion protein (PrPres) accumulation. In Study A, the three animals transfused with P-Capt-filtered samples remain asymptomatic and devoid of PrPres in lymph node biopsies 6 years after the transfusion. In Study B, one animal transfused with PMC#005-filtered samples developed vCJD. CONCLUSION: After 5 to 6 years of progress, this ongoing study provides encouraging results on the prion blood removal performances of the P-Capt filter in macaques, an utmost relevant model for human prion diseases.


Assuntos
Transfusão de Componentes Sanguíneos/efeitos adversos , Segurança do Sangue/instrumentação , Patógenos Transmitidos pelo Sangue/isolamento & purificação , Síndrome de Creutzfeldt-Jakob/prevenção & controle , Encefalopatia Espongiforme Bovina/prevenção & controle , Procedimentos de Redução de Leucócitos/instrumentação , Príons/isolamento & purificação , Ultrafiltração/instrumentação , Adsorção , Animais , Segurança do Sangue/métodos , Química Encefálica , Bovinos , Síndrome de Creutzfeldt-Jakob/sangue , Síndrome de Creutzfeldt-Jakob/transmissão , Encefalopatia Espongiforme Bovina/sangue , Encefalopatia Espongiforme Bovina/transmissão , Macaca fascicularis , Masculino , Filtros Microporos , Microesferas , Príons/análise , Príons/toxicidade , Resinas Sintéticas , Medula Espinal/química , Baço/química
16.
Virulence ; 6(2): 132-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25585171

RESUMO

The key molecular event in human cerebral proteinopathies, which include Alzheimer's, Parkinson's and Huntington's diseases, is the structural conversion of a specific host protein into a ß-sheet-rich conformer. With regards to this common mechanism, it appears difficult to explain the outstanding infectious properties attributed to PrP(Sc), the hallmark of another intriguing family of cerebral proteinopathies known as transmissible spongiform encephalopathies (TSE) or prion diseases. The infectious PrP(Sc) or "prion" is thought to be composed solely of a misfolded form of the otherwise harmless cellular prion protein (PrP(c)). To gain insight into this unique situation, we used the 263K scrapie hamster model to search for a putative PrP(Sc)-associated factor that contributes to the infectivity of PrP(Sc) amyloid. In a rigorously controlled set of experiments that included several bioassays, we showed that originally innocuous recombinant prion protein (recPrP) equivalent to PrP(c) is capable of initiating prion disease in hamsters when it is converted to a prion-like conformation (ß-sheet-rich) in the presence of RNA purified from scrapie-associated fibril (SAF) preparations. Analysis of the recPrP-RNA infectious mixture reveals the presence of 2 populations of small RNAs of approximately 27 and 55 nucleotides. These unprecedented findings are discussed in light of the distinct relationship that may exist between this RNA material and the 2 biological properties, infectivity and strain features, attributed to prion amyloid.


Assuntos
Amiloide/análise , Química Encefálica , Encéfalo/patologia , Proteínas PrPSc/patogenicidade , RNA/metabolismo , Scrapie/etiologia , Animais , Encéfalo/ultraestrutura , Cricetinae , Microscopia Eletrônica , Proteínas PrPSc/análise , Proteínas PrPSc/química , Proteínas PrPSc/genética , Estrutura Secundária de Proteína , RNA/análise , RNA/química , RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
17.
Transfusion ; 55(2): 405-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25154296

RESUMO

BACKGROUND: Variant Creutzfeldt-Jakob disease (vCJD) is a fatal neurodegenerative infection that can be transmitted by blood and blood products from donors in the latent phase of the disease. Currently, there is no validated antemortem vCJD blood screening test. Several blood tests are under development. Any useful test must be validated with disease-relevant blood reference panels. STUDY DESIGN AND METHODS: To generate blood reference materials, we infected four cynomolgus macaques with macaque-adapted vCJD brain homogenates. Blood was collected throughout the preclinical and clinical phases of infection. In parallel, equivalent blood was collected from one uninfected macaque. For each blood collection, an aliquot was stored as whole blood and the remainder was separated into components. Aliquots of plasma from terminally ill macaques were assayed for the presence of PrP(TSE) with the protein misfolding cyclic amplification (PMCA) method. Infectivity of the macaque brain homogenate used to infect macaques was titrated in C57BL/6 and RIII J/S inbred wild-type mice. RESULTS: We sampled blood 19 times from the inoculated monkeys at various stages of the disease over a period of 29 months, generating liters of vCJD-infected macaque blood. vCJD was confirmed in all inoculated macaques. After PMCA, PrP(TSE) was detected in plasma from infected monkeys, but not from uninfected animals. Both mouse models were more sensitive to infection with macaque-adapted vCJD agent than to primary human vCJD agent. CONCLUSION: The macaque vCJD blood panels generated in this study provide a unique resource to support vCJD assay development and to characterize vCJD infectivity in blood.


Assuntos
Síndrome de Creutzfeldt-Jakob/sangue , Príons/sangue , Sequência de Aminoácidos , Animais , Síndrome de Creutzfeldt-Jakob/transmissão , Modelos Animais de Doenças , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Dados de Sequência Molecular , Padrões de Referência
18.
Nucleic Acids Res ; 43(2): 904-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25539913

RESUMO

The prion protein (PrP) is highly conserved and ubiquitously expressed, suggesting that it plays an important physiological function. However, despite decades of investigation, this role remains elusive. Here, by using animal and cellular models, we unveil a key role of PrP in the DNA damage response. Exposure of neurons to a genotoxic stress activates PRNP transcription leading to an increased amount of PrP in the nucleus where it interacts with APE1, the major mammalian endonuclease essential for base excision repair, and stimulates its activity. Preventing the induction of PRNP results in accumulation of abasic sites in DNA and impairs cell survival after genotoxic treatment. Brains from Prnp(-/-) mice display a reduced APE1 activity and a defect in the repair of induced DNA damage in vivo. Thus, PrP is required to maintain genomic stability in response to genotoxic stresses.


Assuntos
Reparo do DNA , Príons/metabolismo , Animais , Encéfalo/enzimologia , Linhagem Celular , Núcleo Celular/química , Sobrevivência Celular , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Metanossulfonato de Metila/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Mutagênicos/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Priônicas , Príons/análise , Príons/biossíntese , Príons/genética , Ativação Transcricional
19.
Prion ; 8(3): 261-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482604

RESUMO

The DNA assisted solid-phase proximity ligation assay (SP-PLA) provides a unique opportunity to specifically detect prion protein (PrP) aggregates by investigating the collocation of 3 or more copies of the specific protein. We have developed an SP-PLA that can detect PrP aggregates in brain homogenates from infected hamsters even after a 10(7)-fold dilution. In contrast, brain homogenate from uninfected animals did not generate a detectable signal at 100-fold higher concentration. Using either of the 2 monoclonal anti-PrP antibodies, 3F4 and 6H4, we successfully detected low concentrations of aggregated PrP. The presented results provide a proof of concept that this method might be an interesting tool in the development of diagnostic approaches of prion diseases.


Assuntos
Amiloide/análise , Imunoensaio/métodos , Príons/análise , Amiloide/química , Amiloide/metabolismo , Animais , Anticorpos Imobilizados , Química Encefálica , Cricetinae , Príons/química , Príons/metabolismo , Sensibilidade e Especificidade
20.
PLoS Pathog ; 10(6): e1004202, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945656

RESUMO

The emergence of variant Creutzfeldt Jakob Disease (vCJD) is considered a likely consequence of human dietary exposure to Bovine Spongiform Encephalopathy (BSE) agent. More recently, secondary vCJD cases were identified in patients transfused with blood products prepared from apparently healthy donors who later went on to develop the disease. As there is no validated assay for detection of vCJD/BSE infected individuals the prevalence of the disease in the population remains uncertain. In that context, the risk of vCJD blood borne transmission is considered as a serious concern by health authorities. In this study, appropriate conditions and substrates for highly efficient and specific in vitro amplification of vCJD/BSE agent using Protein Misfolding Cyclic Amplification (PMCA) were first identified. This showed that whatever the origin (species) of the vCJD/BSE agent, the ovine Q171 PrP substrates provided the best amplification performances. These results indicate that the homology of PrP amino-acid sequence between the seed and the substrate is not the crucial determinant of the vCJD agent propagation in vitro. The ability of this method to detect endogenous vCJD/BSE agent in the blood was then defined. In both sheep and primate models of the disease, the assay enabled the identification of infected individuals in the early preclinical stage of the incubation period. Finally, sample panels that included buffy coat from vCJD affected patients and healthy controls were tested blind. The assay identified three out of the four tested vCJD affected patients and no false positive was observed in 141 healthy controls. The negative results observed in one of the tested vCJD cases concurs with results reported by others using a different vCJD agent blood detection assay and raises the question of the potential absence of prionemia in certain patients.


Assuntos
Síndrome de Creutzfeldt-Jakob/diagnóstico , Encefalopatia Espongiforme Bovina/diagnóstico , Testes Hematológicos/métodos , Príons/sangue , Sequência de Aminoácidos , Animais , Bovinos , Síndrome de Creutzfeldt-Jakob/sangue , Síndrome de Creutzfeldt-Jakob/transmissão , Diagnóstico Precoce , Encefalopatia Espongiforme Bovina/sangue , Encefalopatia Espongiforme Bovina/transmissão , Humanos , Macaca fascicularis , Masculino , Ovinos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...