Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 17(10): e3000448, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31577791

RESUMO

The development of an organism involves the formation of patterns from initially homogeneous surfaces in a reproducible manner. Simulations of various theoretical models recapitulate final states of natural patterns, yet drawing testable hypotheses from those often remains difficult. Consequently, little is known about pattern-forming events. Here, we surveyed plumage patterns and their emergence in Galliformes, ratites, passerines, and penguins, together representing the three major taxa of the avian phylogeny, and built a unified model that not only reproduces final patterns but also intrinsically generates shared and varying directionality, sequence, and duration of patterning. We used in vivo and ex vivo experiments to test its parameter-based predictions. We showed that directional and sequential pattern progression depends on a species-specific prepattern: an initial break in surface symmetry launches a travelling front of sharply defined, oriented domains with self-organising capacity. This front propagates through the timely transfer of increased cell density mediated by cell proliferation, which controls overall patterning duration. These results show that universal mechanisms combining prepatterning and self-organisation govern the timely emergence of the plumage pattern in birds.


Assuntos
Galliformes/genética , Modelos Estatísticos , Paleógnatas/genética , Passeriformes/genética , Pigmentação/genética , Spheniscidae/genética , Animais , Cor , Embrião não Mamífero , Plumas/citologia , Plumas/crescimento & desenvolvimento , Plumas/metabolismo , Galliformes/anatomia & histologia , Galliformes/classificação , Galliformes/crescimento & desenvolvimento , Padrões de Herança , Morfogênese/genética , Paleógnatas/anatomia & histologia , Paleógnatas/classificação , Paleógnatas/crescimento & desenvolvimento , Passeriformes/anatomia & histologia , Passeriformes/classificação , Passeriformes/crescimento & desenvolvimento , Filogenia , Pele/citologia , Pele/crescimento & desenvolvimento , Pele/metabolismo , Spheniscidae/anatomia & histologia , Spheniscidae/classificação , Spheniscidae/crescimento & desenvolvimento
2.
PLoS Genet ; 14(8): e1007581, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080860

RESUMO

Cis-regulation plays an essential role in the control of gene expression, and is particularly complex and poorly understood for developmental genes, which are subject to multiple levels of modulation. In this study, we performed a global analysis of the cis-acting elements involved in the control of the zebrafish developmental gene krox20. krox20 encodes a transcription factor required for hindbrain segmentation and patterning, a morphogenetic process highly conserved during vertebrate evolution. Chromatin accessibility analysis reveals a cis-regulatory landscape that includes 6 elements participating in the control of initiation and autoregulatory aspects of krox20 hindbrain expression. Combining transgenic reporter analyses and CRISPR/Cas9-mediated mutagenesis, we assign precise functions to each of these 6 elements and provide a comprehensive view of krox20 cis-regulation. Three important features emerged. First, cooperation between multiple cis-elements plays a major role in the regulation. Cooperation can surprisingly combine synergy and redundancy, and is not restricted to transcriptional enhancer activity (for example, 4 distinct elements cooperate through different modes to maintain autoregulation). Second, several elements are unexpectedly versatile, which allows them to be involved in different aspects of control of gene expression. Third, comparative analysis of the elements and their activities in several vertebrate species reveals that this versatility is underlain by major plasticity across evolution, despite the high conservation of the gene expression pattern. These characteristics are likely to be of broad significance for developmental genes.


Assuntos
Proteína 2 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica no Desenvolvimento , Rombencéfalo/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas , Cromatina/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/fisiologia , Elementos Facilitadores Genéticos , Evolução Molecular , Loci Gênicos , Morfogênese/genética , Ativação Transcricional , Peixe-Zebra/embriologia
3.
Development ; 142(1): 185-95, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25516974

RESUMO

Although many components of the genetic pathways that provide positional information during embryogenesis have been identified, it remains unclear how these signals are integrated to specify discrete tissue territories. Here, we investigate the molecular mechanisms underlying the formation of one of the hindbrain segments, rhombomere (r) 3, specified by the expression of the gene krox20. Dissecting krox20 transcriptional regulation has identified several input pathways: Hox paralogous 1 (PG1) factors, which both directly activate krox20 and indirectly repress it via Nlz factors, and the molecular components of an Fgf-dependent effector pathway. These different inputs are channelled through a single initiator enhancer element to shape krox20 initial transcriptional response: Hox PG1 and Nlz factors define the anterior-posterior extent of the enhancer's domain of activity, whereas Fgf signalling modulates the magnitude of activity in a spatially uniform manner. Final positioning of r3 boundaries requires interpretation of this initial pattern by a krox20 positive-feedback loop, orchestrated by another enhancer. Overall, this study shows how positional information provided by different patterning mechanisms is integrated through a gene regulatory network involving two cis-acting elements operating on the same gene, thus offering a comprehensive view of the delimitation of a territory.


Assuntos
Padronização Corporal/genética , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Transdução de Sinais/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Mol Syst Biol ; 9: 690, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24061538

RESUMO

Although feedback loops are essential in development, their molecular implementation and precise functions remain elusive. Using enhancer knockout in mice, we demonstrate that a direct, positive autoregulatory loop amplifies and maintains the expression of Krox20, a transcription factor governing vertebrate hindbrain segmentation. By combining quantitative data collected in the zebrafish with biophysical modelling that accounts for the intrinsic stochastic molecular dynamics, we dissect the loop at the molecular level. We find that it underpins a bistable switch that turns a transient input signal into cell fate commitment, as we observe in single cell analyses. The stochasticity of the activation process leads to a graded input-output response until saturation is reached. Consequently, the duration and strength of the input signal controls the size of the hindbrain segments by modulating the distribution between the two cell fates. Moreover, segment formation is buffered from severe variations in input level. Finally, the progressive extinction of Krox20 expression involves a destabilization of the loop by repressor molecules. These mechanisms are of general significance for cell type specification and tissue patterning.


Assuntos
Padronização Corporal/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Rombencéfalo/citologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Proliferação de Células , Embrião de Galinha , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Embrião de Mamíferos , Embrião não Mamífero , Elementos Facilitadores Genéticos , Hibridização In Situ , Camundongos , Dados de Sequência Molecular , Rombencéfalo/crescimento & desenvolvimento , Rombencéfalo/metabolismo , Transdução de Sinais , Processos Estocásticos , Transcrição Gênica , Peixe-Zebra
5.
Development ; 135(20): 3369-78, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18787068

RESUMO

The morphogenesis of the vertebrate hindbrain involves the generation of metameric units called rhombomeres (r), and Krox20 encodes a transcription factor that is expressed in r3 and r5 and plays a major role in this segmentation process. Our knowledge of the basis of Krox20 regulation in r3 is rather confusing, especially concerning the involvement of Hox factors. To investigate this issue, we studied one of the Krox20 hindbrain cis-regulatory sequences, element C, which is active in r3-r5 and which is the only initiator element in r3. We show that element C contains multiple binding sites for Meis and Hox/Pbx factors and that these proteins synergize to activate the enhancer. Mutation of these binding sites allowed us to establish that Krox20 is under the direct transcriptional control of both Meis (presumably Meis2) and Hox/Pbx factors in r3. Furthermore, our data indicate that element C functions according to multiple modes, in Meis-independent or -dependent manners and with different Hox proteins, in r3 and r5. Finally, we show that the Hoxb1 and Krox20 expression domains transiently overlap in prospective r3, and that Hoxb1 binds to element C in vivo, supporting a cell-autonomous involvement of Hox paralogous group 1 proteins in Krox20 regulation. Altogether, our data clarify the molecular mechanisms of an essential step in hindbrain patterning. We propose a model for the complex regulation of Krox20, involving a novel mode of initiation, positive and negative controls by Hox proteins, and multiple direct and indirect autoregulatory loops.


Assuntos
Padronização Corporal , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Rombencéfalo/embriologia , Animais , Proteína 2 de Resposta de Crescimento Precoce/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Rombencéfalo/metabolismo , Transcrição Gênica
6.
Dev Biol ; 309(2): 344-57, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17669392

RESUMO

The homeodomain transcription factor vHNF1 plays an essential role in the patterning of the caudal segmented hindbrain, where it participates in the definition of the boundary between rhombomeres (r) 4 and 5 and in the specification of the identity of r5 and r6. Understanding the molecular basis of vHnf1 own expression therefore constitutes an important issue to decipher the regulatory network governing hindbrain patterning. We have identified a highly conserved 800-bp enhancer element located in the fourth intron of vHnf1 and whose activity recapitulates vHnf1 neural expression in transgenic mice. Functional analysis of this enhancer revealed that it contains two types of essential motifs, a retinoic acid response element and two half T-MARE sites, indicating that it integrates direct inputs from the retinoic acid signaling cascade and MAF-related factors. Our data suggest that MAFB, which is itself regulated by vHNF1, acts as a positive modulator of vHnf1 in r5 and r6, whereas another MAF-related factor is absolutely required for the expression of vHnf1 in both the hindbrain and the spinal cord. We propose a model accounting for the initiation and maintenance phases of vHnf1 expression and for the establishment of the r4/r5 boundary, based on cooperative contributions of Maf factors and retinoic acid signaling.


Assuntos
Fator 1-beta Nuclear de Hepatócito/metabolismo , Fator de Transcrição MafB/fisiologia , Tubo Neural/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Tretinoína/fisiologia , Animais , Sequência de Bases , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Fator 1-beta Nuclear de Hepatócito/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Tubo Neural/embriologia , Elementos de Resposta , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Medula Espinal/embriologia
7.
J Neurosci ; 26(38): 9771-9, 2006 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16988048

RESUMO

Onset of myelination in Schwann cells is governed by several transcription factors, including Krox20/Egr2, and mutations affecting Krox20 result in various human hereditary peripheral neuropathies, including congenital hypomyelinating neuropathy (CHN) and Charcot-Marie-Tooth disease (CMT). Similar molecular information is not available on the process of myelin maintenance. We have generated conditional Krox20 mutations in the mouse that allowed us to develop models for CHN and CMT. In the latter case, specific inactivation of Krox20 in adult Schwann cells results in severe demyelination, involving rapid Schwann cell dedifferentiation and increased proliferation, followed by an attempt to remyelinate and a block at the promyelinating stage. These data establish that Krox20 is not only required for the onset of myelination but that it is also crucial for the maintenance of the myelinating state. Furthermore, myelin maintenance appears as a very dynamic process in which Krox20 may constitute a molecular switch between Schwann cell myelination and demyelination programs.


Assuntos
Alelos , Proteína 2 de Resposta de Crescimento Precoce/biossíntese , Regulação da Expressão Gênica/fisiologia , Bainha de Mielina/metabolismo , Nervos Periféricos/metabolismo , Animais , Proliferação de Células , Proteína 2 de Resposta de Crescimento Precoce/genética , Camundongos , Camundongos Transgênicos , Mutação , Bainha de Mielina/genética , Bainha de Mielina/ultraestrutura , Nervos Periféricos/ultraestrutura
8.
Development ; 130(5): 941-53, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12538520

RESUMO

Neural crest patterning constitutes an important element in the control of the morphogenesis of craniofacial structures. Krox20, a transcription factor gene that plays a critical role in the development of the segmented hindbrain, is expressed in rhombomeres (r) 3 and 5 and in a stream of neural crest cells migrating from r5 toward the third branchial arch. We have investigated the basis of the specific neural crest expression of Krox20 and identified a cis-acting enhancer element (NCE) located 26 kb upstream of the gene that is conserved between mouse, man and chick and can recapitulate the Krox20 neural crest pattern in transgenic mice. Functional dissection of the enhancer revealed the presence of two conserved Krox20 binding sites mediating direct Krox20 autoregulation in the neural crest. In addition, the enhancer included another essential element containing conserved binding sites for high mobility group (HMG) box proteins and which responded to factors expressed throughout the neural crest. Consistent with this the NCE was strongly activated in vitro by Sox10, a crest-specific HMG box protein, in synergism with Krox20, and the inactivation of Sox10 prevented the maintenance of Krox20 expression in the migrating neural crest. These results suggest that the dependency of the enhancer on both crest- (Sox10) and r5- (Krox20) specific factors limits its activity to the r5-derived neural crest. This organisation also suggests a mechanism for the transfer and maintenance of rhombomere-specific gene expression from the hindbrain neuroepithelium to the emerging neural crest and may be of more general significance for neural crest patterning.


Assuntos
Padronização Corporal , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Crista Neural/fisiologia , Fatores de Transcrição/genética , Animais , Sequência de Bases , Sítios de Ligação , Embrião de Galinha , Proteínas de Ligação a DNA/metabolismo , Proteína 2 de Resposta de Crescimento Precoce , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Genes Reporter , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Modelos Genéticos , Crista Neural/anatomia & histologia , Fatores de Transcrição SOXE , Fatores de Transcrição/metabolismo
9.
Development ; 129(1): 155-66, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11782409

RESUMO

In Schwann cells (SC), myelination is controlled by the transcription factor gene Krox20/Egr2. Analysis of cis-acting elements governing Krox20 expression in SC revealed the existence of two separate elements. The first, designated immature Schwann cell element (ISE), was active in immature but not myelinating SC, whereas the second, designated myelinating Schwann cell element (MSE), was active from the onset of myelination to adulthood in myelinating SC. In vivo sciatic nerve regeneration experiments demonstrated that both elements were activated during this process, in an axon-dependent manner. Together the activity of these elements reproduced the profile of Krox20 expression during development and regeneration. Genetic studies showed that both elements were active in a Krox20 mutant background, while the activity of the MSE, but likely not of the ISE, required the POU domain transcription factor Oct6 at the time of myelination. The MSE was localised to a 1.3 kb fragment, 35 kb downstream of Krox20. The identification of multiple Oct6 binding sites within this fragment suggested that Oct6 directly controls Krox20 transcription. Taken together, these data indicate that, although Krox20 is expressed continuously from 15.5 dpc in SC, the regulation of its expression is a biphasic, axon-dependent phenomenon involving two cis-acting elements that act in succession during development. In addition, they provide insight into the complexity of the transcription factor regulatory network controlling myelination.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Células de Schwann/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Diferenciação Celular/fisiologia , Sequência Conservada , Proteína 2 de Resposta de Crescimento Precoce , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Regeneração Nervosa , Células de Schwann/citologia , Nervo Isquiático/fisiologia , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...