Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771246

RESUMO

Lignin is a phenolic polymer in plants that rigidifies the cell walls of water-conducting tracheary elements and support-providing fibers and stone cells. Different mechanisms have been suggested for the transport of lignin precursors to the site of lignification in the cell wall. Extracellular vesicle (EV)-enriched samples isolated from a lignin-forming cell suspension culture of Norway spruce (Picea abies L. Karst.) contained both phenolic metabolites and enzymes related to lignin biosynthesis. Metabolomic analysis revealed mono-, di- and oligolignols in the EV isolates, as well as carbohydrates and amino acids. In addition, salicylic acid (SA) and some proteins involved in SA signaling were detected in the EV-enriched samples. A proteomic analysis detected several laccases, peroxidases, ß-glucosidases, putative dirigent proteins, and cell wall-modifying enzymes such as glycosyl hydrolases, transglucosylase/hydrolases, and expansins in EVs. Our findings suggest that EVs are involved in transporting enzymes required for lignin polymerization in Norway spruce, and that radical coupling of monolignols can occur in these vesicles.

2.
Plant J ; 116(1): 7-22, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37608631

RESUMO

Strigolactones are a class of phytohormones that are involved in many different plant developmental processes, including the rhizobium-legume nodule symbiosis. Although both positive and negative effects of strigolactones on the number of nodules have been reported, the influence of strigolactones on nodule development is still unknown. Here, by means of the ramosus (rms) mutants of Pisum sativum (pea) cv Terese, we investigated the impact of strigolactone biosynthesis (rms1 and rms5) and signaling (rms3 and rms4) mutants on nodule growth. The rms mutants had more red, that is, functional, and larger nodules than the wild-type plants. Additionally, the increased nitrogen fixation and senescence zones with consequently reduced meristematic and infection zones indicated that the rms nodules developed faster than the wild-type nodules. An enhanced expression of the nodule zone-specific molecular markers for meristem activity and senescence supported the enlarged, fast maturing nodules. Interestingly, the master nodulation regulator, NODULE INCEPTION, NIN, was strongly induced in nodules of all rms mutants but not prior to inoculation. Determination of sugar levels with both bulk and spatial metabolomics in roots and nodules, respectively, hints at slightly increased malic acid levels early during nodule primordia formation and reduced sugar levels at later stages, possibly the consequence of an increased carbon usage of the enlarged nodules, contributing to the enhanced senescence. Taken together, these results suggest that strigolactones regulate the development of nodules, which is probably mediated through NIN, and available plant sugars.


Assuntos
Pisum sativum , Reguladores de Crescimento de Plantas , Pisum sativum/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Fixação de Nitrogênio/fisiologia , Simbiose/fisiologia , Açúcares/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
3.
Front Plant Sci ; 14: 1200253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426959

RESUMO

Industrial chicory (Cichorium intybus var. sativum) and witloof (C. intybus var. foliosum) are crops with an important economic value, mainly cultivated for inulin production and as a leafy vegetable, respectively. Both crops are rich in nutritionally relevant specialized metabolites with beneficial effects for human health. However, their bitter taste, caused by the sesquiterpene lactones (SLs) produced in leaves and taproot, limits wider applications in the food industry. Changing the bitterness would thus create new opportunities with a great economic impact. Known genes encoding enzymes involved in the SL biosynthetic pathway are GERMACRENE A SYNTHASE (GAS), GERMACRENE A OXIDASE (GAO), COSTUNOLIDE SYNTHASE (COS) and KAUNIOLIDE SYNTHASE (KLS). In this study, we integrated genome and transcriptome mining to further unravel SL biosynthesis. We found that C. intybus SL biosynthesis is controlled by the phytohormone methyl jasmonate (MeJA). Gene family annotation and MeJA inducibility enabled the pinpointing of candidate genes related with the SL biosynthetic pathway. We specifically focused on members of subclade CYP71 of the cytochrome P450 family. We verified the biochemical activity of 14 C. intybus CYP71 enzymes transiently produced in Nicotiana benthamiana and identified several functional paralogs for each of the GAO, COS and KLS genes, pointing to redundancy in and robustness of the SL biosynthetic pathway. Gene functionality was further analyzed using CRISPR/Cas9 genome editing in C. intybus. Metabolite profiling of mutant C. intybus lines demonstrated a successful reduction in SL metabolite production. Together, this study increases our insights into the C. intybus SL biosynthetic pathway and paves the way for the engineering of C. intybus bitterness.

4.
Plant Direct ; 6(12): e465, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36545006

RESUMO

The phenylpropanoid cinnamic acid (CA) is a plant metabolite that can occur under a trans- or cis-form. In contrast to the proven bioactivity of the cis-form (c-CA), the activity of trans-CA (t-CA) is still a matter of debate. We tested both compounds using a submerged rice coleoptile assay and demonstrated that they have opposite effects on cell elongation. Notably, in the tip of rice coleoptile t-CA showed an inhibiting and c-CA a stimulating activity. By combining transcriptomics and (untargeted) metabolomics with activity assays and genetic and pharmacological experiments, we aimed to explain the underlying mechanistic processes. We propose a model in which c-CA treatment activates proton pumps and stimulates acidification of the apoplast, which in turn leads to the loosening of the cell wall, necessary for elongation. We hypothesize that c-CA also inactivates auxin efflux transporters, which might cause a local auxin accumulation in the tip of the coleoptile. For t-CA, the phenotype can partially be explained by a stimulation of cell wall polysaccharide feruloylation, leading to a more rigid cell wall. Metabolite profiling also demonstrated that salicylic acid (SA) derivatives are increased upon t-CA treatment. As SA is a known antagonist of auxin, the shift in SA homeostasis provides an additional explanation of the observed t-CA-mediated restriction on cell growth.

5.
J Exp Bot ; 73(22): 7564-7581, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36124630

RESUMO

Induced resistance (IR), a phenotypic state induced by an exogenous stimulus and characterized by enhanced resistance to future (a)biotic challenge, is an important component of plant immunity. Numerous IR-inducing stimuli have been described in various plant species, but relatively little is known about 'core' systemic responses shared by these distinct IR stimuli and the effects of IR on plant-associated microbiota. In this study, rice (Oryza sativa) leaves were treated with four distinct IR stimuli (ß-aminobutyric acid, acibenzolar-S-methyl, dehydroascorbic acid, and piperonylic acid) capable of inducing systemic IR against the root-knot nematode Meloidogyne graminicola and evaluated their effect on the root transcriptome and exudome, and root-associated nematode communities. Our results reveal shared transcriptional responses-notably induction of jasmonic acid and phenylpropanoid metabolism-and shared alterations to the exudome that include increased amino acid, benzoate, and fatty acid exudation. In rice plants grown in soil from a rice field, IR stimuli significantly affected the composition of rhizosphere nematode communities 3 d after treatment, but by 14 d after treatment these changes had largely reverted. Notably, IR stimuli did not reduce nematode diversity, which suggests that IR might offer a sustainable option for managing plant-parasitic nematodes.


Assuntos
Oryza , Oryza/genética
6.
Sci Adv ; 8(28): eabo5738, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857515

RESUMO

Lignin is the main factor limiting the enzymatic conversion of lignocellulosic biomass into fermentable sugars. To reduce the recalcitrance engendered by the lignin polymer, the coumarin scopoletin was incorporated into the lignin polymer through the simultaneous expression of FERULOYL-CoA 6'-HYDROXYLASE 1 (F6'H1) and COUMARIN SYNTHASE (COSY) in lignifying cells in Arabidopsis. The transgenic lines overproduced scopoletin and incorporated it into the lignin polymer, without adversely affecting plant growth. About 3.3% of the lignin units in the transgenic lines were derived from scopoletin, thereby exceeding the levels of the traditional p-hydroxyphenyl units. Saccharification efficiency of alkali-pretreated scopoletin-overproducing lines was 40% higher than for wild type.

7.
Plants (Basel) ; 10(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34834756

RESUMO

The plant specialized metabolome consists of a multitude of structurally and functionally diverse metabolites, variable from species to species. The specialized metabolites play roles in the response to environmental changes and abiotic or biotic stresses, as well as in plant growth and development. At its basis, the specialized metabolism is built of four major pathways, each starting from a few distinct primary metabolism precursors, and leading to distinct basic carbon skeleton core structures: polyketides and fatty acid derivatives, terpenoids, alkaloids, and phenolics. Structural diversity in specialized metabolism, however, expands exponentially with each subsequent modification. We review here the major sources of structural variety and question if a specific role can be attributed to each distinct structure. We focus on the influences that various core structures and modifications have on flavonoid antioxidant activity and on the diversity generated by oxidative coupling reactions. We suggest that many oxidative coupling products, triggered by initial radical scavenging, may not have a function in se, but could potentially be enzymatically recycled to effective antioxidants. We further discuss the wide structural variety created by multiple decorations (glycosylations, acylations, prenylations), the formation of high-molecular weight conjugates and polyesters, and the plasticity of the specialized metabolism. We draw attention to the need for untargeted methods to identify the complex, multiply decorated and conjugated compounds, in order to study the functioning of the plant specialized metabolome.

8.
Comput Struct Biotechnol J ; 19: 1127-1144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680356

RESUMO

Despite the scientific and economic importance of maize, little is known about its specialized metabolism. Here, five maize organs were profiled using different reversed-phase liquid chromatography-mass spectrometry methods. The resulting spectral metadata, combined with candidate substrate-product pair (CSPP) networks, allowed the structural characterization of 427 of the 5,420 profiled compounds, including phenylpropanoids, flavonoids, benzoxazinoids, and auxin-related compounds, among others. Only 75 of the 427 compounds were already described in maize. Analysis of the CSPP networks showed that phenylpropanoids are present in all organs, whereas other metabolic classes are rather organ-enriched. Frequently occurring CSPP mass differences often corresponded with glycosyl- and acyltransferase reactions. The interplay of glycosylations and acylations yields a wide variety of mixed glycosides, bearing substructures corresponding to the different biochemical classes. For example, in the tassel, many phenylpropanoid and flavonoid-bearing glycosides also contain auxin-derived moieties. The characterized compounds and mass differences are an important step forward in metabolic pathway discovery and systems biology research. The spectral metadata of the 5,420 compounds is publicly available (DynLib spectral database, https://bioit3.irc.ugent.be/dynlib/).

9.
Comput Struct Biotechnol J ; 19: 72-85, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33384856

RESUMO

Over the last decade, a giant leap forward has been made in resolving the main bottleneck in metabolomics, i.e., the structural characterization of the many unknowns. This has led to the next challenge in this research field: retrieving biochemical pathway information from the various types of networks that can be constructed from metabolome data. Searching putative biochemical pathways, referred to as biotransformation paths, is complicated because several flaws occur during the construction of metabolome networks. Multiple network analysis tools have been developed to deal with these flaws, while in silico retrosynthesis is appearing as an alternative approach. In this review, the different types of metabolome networks, their flaws, and the various tools to trace these biotransformation paths are discussed.

10.
Plant Physiol ; 175(3): 1018-1039, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28878036

RESUMO

In the search for renewable energy sources, genetic engineering is a promising strategy to improve plant cell wall composition for biofuel and bioproducts generation. Lignin is a major factor determining saccharification efficiency and, therefore, is a prime target to engineer. Here, lignin content and composition were modified in poplar (Populus tremula × Populus alba) by specifically down-regulating CINNAMYL ALCOHOL DEHYDROGENASE1 (CAD1) by a hairpin-RNA-mediated silencing approach, which resulted in only 5% residual CAD1 transcript abundance. These transgenic lines showed no biomass penalty despite a 10% reduction in Klason lignin content and severe shifts in lignin composition. Nuclear magnetic resonance spectroscopy and thioacidolysis revealed a strong increase (up to 20-fold) in sinapaldehyde incorporation into lignin, whereas coniferaldehyde was not increased markedly. Accordingly, ultra-high-performance liquid chromatography-mass spectrometry-based phenolic profiling revealed a more than 24,000-fold accumulation of a newly identified compound made from 8-8 coupling of two sinapaldehyde radicals. However, no additional cinnamaldehyde coupling products could be detected in the CAD1-deficient poplars. Instead, the transgenic lines accumulated a range of hydroxycinnamate-derived metabolites, of which the most prominent accumulation (over 8,500-fold) was observed for a compound that was identified by purification and nuclear magnetic resonance as syringyl lactic acid hexoside. Our data suggest that, upon down-regulation of CAD1, coniferaldehyde is converted into ferulic acid and derivatives, whereas sinapaldehyde is either oxidatively coupled into S'(8-8)S' and lignin or converted to sinapic acid and derivatives. The most prominent sink of the increased flux to hydroxycinnamates is syringyl lactic acid hexoside. Furthermore, low-extent saccharification assays, under different pretreatment conditions, showed strongly increased glucose (up to +81%) and xylose (up to +153%) release, suggesting that down-regulating CAD1 is a promising strategy for improving lignocellulosic biomass for the sugar platform industry.


Assuntos
Acroleína/análogos & derivados , Oxirredutases do Álcool/metabolismo , Metabolismo dos Carboidratos , Traqueófitas/enzimologia , Acroleína/química , Acroleína/metabolismo , Álcalis/farmacologia , Biomassa , Parede Celular/metabolismo , Lignina/química , Lignina/metabolismo , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas , Metanol/química , Modelos Moleculares , Oxirredução , Fenóis/metabolismo , Fenótipo , Pigmentação , Plantas Geneticamente Modificadas , Populus/genética , Solubilidade , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...