Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(7)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807183

RESUMO

Transcription occurs across more than 70% of the human genome and more than half of currently annotated genes produce functional noncoding RNAs. Of these transcripts, the majority-long, noncoding RNAs (lncRNAs)-are greater than 200 nucleotides in length and are necessary for various roles in the cell. It is increasingly appreciated that these lncRNAs are relevant in both health and disease states, with the brain expressing the largest number of lncRNAs compared to other organs. Glioblastoma (GBM) is an aggressive, fatal brain tumor that demonstrates remarkable intratumoral heterogeneity, which has made the development of effective therapies challenging. The cooperation between genetic and epigenetic alterations drives rapid adaptation that allows therapeutic evasion and recurrence. Given the large repertoire of lncRNAs in normal brain tissue and the well-described roles of lncRNAs in molecular and cellular processes, these transcripts are important to consider in the context of GBM heterogeneity and treatment resistance. Herein, we review the general mechanisms and biological roles of lncRNAs, with a focus on GBM, as well as RNA-based therapeutics currently in development.

2.
Neuro Oncol ; 20(9): 1185-1196, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-29982664

RESUMO

Background: Meningiomas are the most common primary brain tumor in adults, and somatic loss of the neurofibromatosis 2 (NF2) tumor suppressor gene is a frequent genetic event. There is no effective treatment for tumors that recur or continue to grow despite surgery and/or radiation. Therefore, targeted therapies that either delay tumor progression or cause tumor shrinkage are much needed. Our earlier work established mammalian target of rapamycin complex mTORC1/mTORC2 activation in NF2-deficient meningiomas. Methods: High-throughput kinome analyses were performed in NF2-null human arachnoidal and meningioma cell lines to identify functional kinome changes upon NF2 loss. Immunoblotting confirmed the activation of kinases and demonstrated effectiveness of drugs to block the activation. Drugs, singly and in combination, were screened in cells for their growth inhibitory activity. Antitumor drug efficacy was tested in an orthotopic meningioma model. Results: Erythropoietin-producing hepatocellular receptor tyrosine kinases (EPH RTKs), c-KIT, and Src family kinase (SFK) members, which are biological targets of dasatinib, were among the top candidates activated in NF2-null cells. Dasatinib significantly inhibited phospho-EPH receptor A2 (pEPHA2), pEPHB1, c-KIT, and Src/SFK in NF2-null cells, showing no cross-talk with mTORC1/2 signaling. Posttreatment kinome analyses showed minimal adaptive changes. While dasatinib treatment showed some activity, dual mTORC1/2 inhibitor and its combination with dasatinib elicited stronger growth inhibition in meningiomas. Conclusion: Co-targeting mTORC1/2 and EPH RTK/SFK pathways could be a novel effective treatment strategy for NF2-deficient meningiomas.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Meníngeas/patologia , Meningioma/patologia , Neurofibromina 2/deficiência , Receptores da Família Eph/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Humanos , Neoplasias Meníngeas/tratamento farmacológico , Neoplasias Meníngeas/metabolismo , Meningioma/tratamento farmacológico , Meningioma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 13(6): e0197350, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29897904

RESUMO

Neurofibromatosis 2 (NF2) is a rare tumor suppressor syndrome that manifests with multiple schwannomas and meningiomas. There are no effective drug therapies for these benign tumors and conventional therapies have limited efficacy. Various model systems have been created and several drug targets have been implicated in NF2-driven tumorigenesis based on known effects of the absence of merlin, the product of the NF2 gene. We tested priority compounds based on known biology with traditional dose-concentration studies in meningioma and schwann cell systems. Concurrently, we studied functional kinome and gene expression in these cells pre- and post-treatment to determine merlin deficient molecular phenotypes. Cell viability results showed that three agents (GSK2126458, Panobinostat, CUDC-907) had the greatest activity across schwannoma and meningioma cell systems, but merlin status did not significantly influence response. In vivo, drug effect was tumor specific with meningioma, but not schwannoma, showing response to GSK2126458 and Panobinostat. In culture, changes in both the transcriptome and kinome in response to treatment clustered predominantly based on tumor type. However, there were differences in both gene expression and functional kinome at baseline between meningioma and schwannoma cell systems that may form the basis for future selective therapies. This work has created an openly accessible resource (www.synapse.org/SynodosNF2) of fully characterized isogenic schwannoma and meningioma cell systems as well as a rich data source of kinome and transcriptome data from these assay systems before and after treatment that enables single and combination drug discovery based on molecular phenotype.


Assuntos
Neoplasias Meníngeas/genética , Neurilemoma/genética , Neurofibromatose 2/genética , Neurofibromina 2/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Meníngeas/tratamento farmacológico , Neoplasias Meníngeas/patologia , Camundongos , Morfolinas/farmacologia , Neurilemoma/tratamento farmacológico , Neurilemoma/patologia , Neurofibromatose 2/tratamento farmacológico , Neurofibromatose 2/patologia , Panobinostat/farmacologia , Piridazinas , Pirimidinas/farmacologia , Quinolinas/farmacologia , Sulfonamidas/farmacologia , Biologia de Sistemas , Transcriptoma/genética
4.
Oncotarget ; 6(19): 16981-97, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26219339

RESUMO

Meningiomas are the most common primary intracranial adult tumor. All Neurofibromatosis 2 (NF2)-associated meningiomas and ~60% of sporadic meningiomas show loss of NF2 tumor suppressor protein. There are no effective medical therapies for progressive and recurrent meningiomas. Our previous work demonstrated aberrant activation of mTORC1 signaling that led to ongoing clinical trials with rapamycin analogs for NF2 and sporadic meningioma patients. Here we performed a high-throughput kinome screen to identify kinases responsible for mTORC1 pathway activation in NF2-deficient meningioma cells. Among the emerging top candidates were the mTORC2-specific target serum/glucocorticoid-regulated kinase 1 (SGK1) and p21-activated kinase 1 (PAK1). In NF2-deficient meningioma cells, inhibition of SGK1 rescues mTORC1 activation, and SGK1 activation is sensitive to dual mTORC1/2 inhibitor AZD2014, but not to rapamycin. PAK1 inhibition also leads to attenuated mTORC1 but not mTORC2 signaling, suggesting that mTORC2/SGK1 and Rac1/PAK1 pathways are independently responsible for mTORC1 activation in NF2-deficient meningiomas. Using CRISPR-Cas9 genome editing, we generated isogenic human arachnoidal cell lines (ACs), the origin cell type for meningiomas, expressing or lacking NF2. NF2-null CRISPR ACs recapitulate the signaling of NF2-deficient meningioma cells. Interestingly, we observe increased SGK1 transcription and protein expression in NF2-CRISPR ACs and in primary NF2-negative meningioma lines. Moreover, we demonstrate that the dual mTORC1/mTORC2 inhibitor, AZD2014 is superior to rapamycin and PAK inhibitor FRAX597 in blocking proliferation of meningioma cells. Importantly, AZD2014 is currently in use in several clinical trials of cancer. Therefore, we believe that AZD2014 may provide therapeutic advantage over rapalogs for recurrent and progressive meningiomas.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Neoplasias Meníngeas/enzimologia , Meningioma/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Antineoplásicos/farmacologia , Benzamidas , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Immunoblotting , Neoplasias Meníngeas/genética , Meningioma/genética , Morfolinas/farmacologia , Neurofibromatose 2/genética , Reação em Cadeia da Polimerase , Pirimidinas , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...