Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36850555

RESUMO

Nowadays, unmanned aerial vehicles/drones are involved in a continuously growing number of security incidents. Therefore, the research interest in drone versus human movement detection and characterization is justified by the fact that such devices represent a potential threat for indoor/office intrusion, while normally, a human presence is allowed after passing several security points. Our paper comparatively characterizes the movement of a drone and a human in an indoor environment. The movement map was obtained using advanced signal processing methods such as wavelet transform and the phase diagram concept, and applied to the signal acquired from UWB sensors.


Assuntos
Movimento , Processamento de Sinais Assistido por Computador , Humanos , Dispositivos Aéreos não Tripulados , Análise de Ondaletas
2.
Sensors (Basel) ; 22(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559976

RESUMO

Full-duplex (FD) communication systems allow for increased spectral efficiency but require effective self-interference cancellation (SIC) techniques to enable the proper reception of the signal of interest. The underlying idea of digital SIC is to estimate the self-interference (SI) channel based on the received signal and the known transmitted waveform. This is a challenging task since the SI channel involves, especially for mass-market FD transceivers, many nonlinear distortions produced by the impairments of the analog components from the receiving and transmitting chains. Hence, this paper first analyzes the power of the SI components under practical conditions and focuses on the most significant one, which is proven to be produced by the I/Q mixer imbalance. Then, a widely-linear digital SIC approach is adopted, which simultaneously deals with the direct SI and its image component caused by the I/Q imbalance. Finally, the performances achieved by linear and widely-linear SIC approaches are evaluated and compared using an experimental FD platform relying on software-defined radio technology and GNU Radio. Moreover, the considered experimental framework allows us to set different image rejection ratios for the transmission path I/Q mixer and to study its influence on the SIC capability of the discussed approaches.

3.
Sensors (Basel) ; 22(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890937

RESUMO

This paper studies the secrecy coding analysis achieved by the self-jamming technique in the presence of an eavesdropper by considering a short-packet Full-Duplex (FD) transmission developed based on iterative blind or semi-blind channel estimation and advanced decoding algorithms. Indeed, the legitimate receiver and eavesdropper can simultaneously receive the intended signal from the transmitter and broadcast a self-jamming or jamming signal to the others. Unlike other conventional techniques without feedback, the blind or semi-blind algorithm applied at the legitimate receiver can simultaneously estimate, firstly, the Self-Interference (SI) channel to cancel the SI component and, secondly, estimate the propagation channel, then decode the intended messages by using 5G Quasi-Cyclic Low-Density Parity Check (QC-LDPC) codes. Taking into account the passive eavesdropper case, the blind channel estimation with a feedback scheme is applied, where the temporary estimation of the intended channel and the decoded message are fed back to improve both the channel estimation and the decoding processes. Only the blind algorithm needs to be implemented in the case of a passive eavesdropper because it achieves sufficient performances and does not require adding pilot symbols as the semi-blind algorithm. In the case of an active eavesdropper, based on its robustness in the low region of the Signal-to-Noise Ratio (SNR), the semi-blind algorithm is considered by trading four pilot symbols and only requiring the feedback for channel estimation processes in order to overcome the increase in noise in the legitimate receiver. The results show that the blind or semi-blind algorithms outperform the conventional algorithm in terms of Mean Square Error (MSE), Bit Error Rate (BER) and security gap (Sg). In addition, it has been shown that the blind or semi-blind algorithms are less sensitive to high SI and self-jamming interference power levels imposed by secured FD transmission than the conventional algorithms without feedback.

4.
Sensors (Basel) ; 20(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086724

RESUMO

In the last years, the commercial drone/unmanned aerial vehicles market has grown due to their technological performances (provided by the multiple onboard available sensors), low price, and ease of use. Being very attractive for an increasing number of applications, their presence represents a major issue for public or classified areas with a special status, because of the rising number of incidents. Our paper proposes a new approach for the drone movement detection and characterization based on the ultra-wide band (UWB) sensing system and advanced signal processing methods. This approach characterizes the movement of the drone using classical methods such as correlation, envelope detection, time-scale analysis, but also a new method, the recurrence plot analysis. The obtained results are compared in terms of movement map accuracy and required computation time in order to offer a future starting point for the drone intrusion detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...