Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 46(8): 2680-2689, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28170015

RESUMO

The Fe(ii) complex of the L1 ligand (L1 = 6-(3,5-diamino-2,4,6-triazinyl)-2,2'-bipyridine) has been used as a templating cation for the growth of oxalate-based networks. The magnetic characterization of the [FeII(L1)2](ClO4)2·CH3CN (1) precursor in the solid state has been performed for the first time showing that the low-spin (LS) state is predominating from 2 to 400 K with 10% of Fe(ii), which undergoes a gradual and irreversible spin-crossover above 350 K. 1 presents the LIESST effect with a photo-conversion close to 25% and a T(LIESST) of 49 K. During the preparation of 1, a secondary product of the formula [FeII(L1)(CH3CN)2(H2O)](ClO4)2·CH3CN (2) has been obtained. The magnetic characterization of 2 shows that it contains high-spin (HS) Fe(ii). 1 has afforded two novel oxalate-based compounds, the 2D compound of the formula [FeII(L1)2][MnIICrIII(ox)3]2·(CH3NO2)6·(CH3OH)·(H2O)2 (3) and the 3D compound of the formula [FeII(L1)2][MnIICrIII(ox)3]2·(CH3CN)3 (4), which have been obtained by changing the synthetic conditions. The magnetic properties show that in 3 the inserted Fe(ii) cation remains in the LS state from 2 to 340 K and presents a partial and irreversible spin-crossover of ∼20% at higher temperatures. In 4, most of the Fe(ii) complexes remain in the LS state from 2 to 230 K and present a partial and irreversible spin-crossover of ∼50% from 230 to 400 K. 3 and 4 do not present the LIESST effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA