Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(8): 5509-5516, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29119977

RESUMO

Methoxymethanol, CH3OCH2OH is a very interesting candidate for detection in the interstellar medium since it can be formed in the recombination reaction between two radicals considered as intermediates in methanol formation: CH3O (already detected in the ISM) and CH2OH. It could also be formed by the addition of CH3O to formaldehyde (another abundant compound in the ISM) followed by abstraction of a hydrogen radical. In this study, we present the first spectroscopic characterization of methoxymethanol in the millimeter-wave range augmented by high level quantum chemical calculations. The analysis revealed three stable conformations all exhibiting different large amplitude motions (LAMs). For the analysis of the most stable conformation (I) we applied a model that accounts for hindered internal rotation of the methyl top. The analysis of conformation III was performed taking the interaction between the overall rotation and OH torsional motion into account. Conformation II was only tentatively assigned, as it exhibits several LAMs that significantly complicate the theoretical description. Accurate spectroscopic parameters obtained in this study provide a reliable basis for the detection of methoxymethanol in the ISM.

2.
Sci Adv ; 1(9): e1500863, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26601319

RESUMO

The presence of numerous complex organic molecules (COMs; defined as those containing six or more atoms) around protostars shows that star formation is accompanied by an increase of molecular complexity. These COMs may be part of the material from which planetesimals and, ultimately, planets formed. Comets represent some of the oldest and most primitive material in the solar system, including ices, and are thus our best window into the volatile composition of the solar protoplanetary disk. Molecules identified to be present in cometary ices include water, simple hydrocarbons, oxygen, sulfur, and nitrogen-bearing species, as well as a few COMs, such as ethylene glycol and glycine. We report the detection of 21 molecules in comet C/2014 Q2 (Lovejoy), including the first identification of ethyl alcohol (ethanol, C2H5OH) and the simplest monosaccharide sugar glycolaldehyde (CH2OHCHO) in a comet. The abundances of ethanol and glycolaldehyde, respectively 5 and 0.8% relative to methanol (0.12 and 0.02% relative to water), are somewhat higher than the values measured in solar-type protostars. Overall, the high abundance of COMs in cometary ices supports the formation through grain-surface reactions in the solar system protoplanetary disk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...