Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Antioxidants (Basel) ; 13(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38671911

RESUMO

This study analyzed the nutrient levels, secondary metabolite contents, and antioxidant activities of 35 yardlong bean accessions from China, Korea, Myanmar, and Thailand, along with their key agronomic traits. Significant variations were found in all the parameters analyzed (p < 0.05). The crude fiber (CFC), dietary fiber (DFC), total protein, and total fat contents varied from 4.10 to 6.51%, 16.71 to 23.49%, 22.45 to 28.11%, and 0.59 to 2.00%, respectively. HPLC analysis showed more than a 10-fold difference in vitamin C level (0.23 to 3.04 mg/g), whereas GC-FID analysis revealed the dominance of palmitic acid and linoleic acid. All accessions had high levels of total unsaturated fatty acids, which could help in preventing cardiovascular disease. Furthermore, total phenolic, tannin, and saponin contents ranged between 3.78 and 9.13 mg GAE/g, 31.20 and 778.34 mg CE/g, and 25.79 and 82.55 mg DE/g, respectively. Antioxidant activities like DPPH• scavenging, ABTS•+ scavenging, and reducing power (RP) ranged between 1.63 and 9.95 mg AAE/g, 6.51 and 21.21 mg TE/g, and 2.02, and 15.58 mg AAE/g, respectively. Days to flowering, total fat, palmitic acid, oleic acid, and TPC were significantly influenced by origin and genotype differences, while seeds per pod, one-hundred seeds weight, CFC, DFC, vitamin C, RP, and TSC were not affected by these factors. Multivariate analysis categorized the accessions into four clusters showing significant variations in most of the analyzed parameters. Correlation analysis also revealed significant relationships between several noteworthy parameters. Overall, this comprehensive analysis of biochemical factors revealed diversity among the different yardlong bean varieties. These findings could have practical applications in industries, breeding programs, and conservation efforts.

3.
Antioxidants (Basel) ; 13(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38539909

RESUMO

This study explored the glucosinolate (GSL) content in Brassica plants and utilized in silico analysis approach to assess their antioxidant capabilities. GSLs, present abundantly in Brassica vegetables, offer potential health advantages, including antioxidant effects. Employing Ultra-Performance Liquid Chromatography (UPLC) coupled with tandem mass spectrometry (MS/MS), major GSLs were identified in 89 accessions from diverse species and subspecies. Statistical analysis and principal component analysis unveiled significant GSL variation and potential correlations among the Brassica germplasms. This study unveils the dominance of aliphatic GSLs over aromatic and indolyl compounds in all the accessions. Notably, Gluconapin (GNA) (33,049.23 µmol·kg-1 DW), Glucobrassicanapin (GBN) (9803.82 µmol·kg-1 DW), Progoitrin (PRO) (12,780.48 µmol·kg-1 DW) and Sinigrin (SIN) (14,872.93 µmol·kg-1 DW) were the most abundant compounds across the analyzed accessions. Moreover, in silico docking studies predicted promising antioxidant activity by evaluating the interactions of each GSL with antioxidant enzymes. Specifically, Sinigrin and Gluconapin exhibited a notably weaker influence on antioxidant enzymes. This provides key insights into the antioxidant potential of Brassica germplasm and highlights the importance of in silico analysis for evaluating bioactive properties. In general, the results of this study could be utilized in breeding programs to maximize GSL levels and antioxidant properties in Brassica crops and for developing functional foods with enhanced health benefits.

4.
Plants (Basel) ; 13(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38256723

RESUMO

This study characterized the diversity of 367 barley collections from 27 different countries, including 5 control cultivars, using several phenotypic traits. Morphological traits, including spike type, grain morphology, cold damage, and lodging rate, exhibited wide variations. Eighteen accessions matured early, while four accessions had longer culm and spike lengths than the controls. The ranges of total phenolic content (TPC), ß-glucan content, ABTS•+ scavenging activity, DPPH• scavenging activity, and reducing power (RP) were 1.79-6.79 mg GAE/g, 0.14-8.41 g/100 g, 3.07-13.54 mg AAE/100 g, 1.56-6.24 mg AAE/g, and 1.31-7.86 mg AAE/g, respectively. Betaone, one of the controls, had the highest ß-glucan content. Two accessions had ß-glucan levels close to Betaone. Furthermore, 20 accessions exhibited increased TPC compared to the controls, while 5 accessions displayed elevated ABTS•+ scavenging activity. Among these, one accession also exhibited higher DPPH• scavenging activity and RP simultaneously. Based on the statistical analysis of variance, all the quantitative traits were significantly affected by the difference in origin (p < 0.05). On the other hand, grain morphology significantly affected biochemical traits. Multivariate analysis classified barley accessions into eight groups, demonstrating variations in quantitative traits. There were noteworthy correlations between biochemical and agronomical traits. Overall, this study characterized several barley varieties of different origins, anticipating future genomic research. The barley accessions with superior performances could be valuable alternatives in breeding.

5.
Plants (Basel) ; 12(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140482

RESUMO

Adzuki beans are widely cultivated in East Asia and are one of the earliest domesticated crops. In order to gain a deeper understanding of the genetic diversity and domestication history of adzuki beans, we conducted Genotyping by Sequencing (GBS) analysis on 366 landraces originating from Korea, China, and Japan, resulting in 6586 single-nucleotide polymorphisms (SNPs). Population structure analysis divided these 366 landraces into three subpopulations. These three subpopulations exhibited distinctive distributions, suggesting that they underwent extended domestication processes in their respective regions of origin. Phenotypic variance analysis of the three subpopulations indicated that the Korean-domesticated subpopulation exhibited significantly higher 100-seed weights, the Japanese-domesticated subpopulation showed significantly higher numbers of grains per pod, and the Chinese-domesticated subpopulation displayed significantly higher numbers of pods per plant. We speculate that these differences in yield-related traits may be attributed to varying emphases placed by early breeders in these regions on the selection of traits related to yield. A large number of genes related to biotic/abiotic stress resistance and defense were found in most quantitative trait locus (QTL) for yield-related traits using genome-wide association studies (GWAS). Genomic sliding window analysis of Tajima's D and a genetic differentiation coefficient (Fst) revealed distinct domestication selection signatures and genotype variations on these QTLs within each subpopulation. These findings indicate that each subpopulation would have been subjected to varied biotic/abiotic stress events in different origins, of which these stress events have caused balancing selection differences in the QTL of each subpopulation. In these balancing selections, plants tend to select genotypes with strong resistance under biotic/abiotic stress, but reduce the frequency of high-yield genotypes to varying degrees. These biotic/abiotic stressors impact crop yield and may even lead to selection purging, resulting in the loss of several high-yielding genotypes among landraces. However, this also fuels the flow of crop germplasms. Overall, balancing selection appears to have a more significant impact on the three yield-related traits compared to breeder-driven domestication selection. These findings are crucial for understanding the impact of domestication selection history on landraces and yield-related traits, aiding in the improvement of adzuki bean varieties.

6.
Foods ; 12(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002121

RESUMO

Legume dehulling often removes anti-nutrients while improving nutritional quality. However, the process may reduce the levels of other health-promoting metabolites. This study investigated the effect of dehulling on major nutrients, bioactive metabolites, and antioxidant activities using 22 faba bean cultivars typically grown in different parts of the world. The faba bean cultivars differed significantly in all the parameters assessed. Crude fiber (CFC), dietary fiber (DFC), crude protein, and crude fat contents were in the ranges of 5.24-10.56, 16.17-25.15, 19.83-30.90, and 0.79-1.94% in the whole seeds and 0.96-1.59, 4.14-9.50, 22.47-36.61, and 1.13-2.07% in the dehulled seeds, respectively. Moreover, fatty acids including palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid, bioactive metabolites including total phenol (TPC), total saponin (TSC), and total tannin (TTC) contents, and antioxidant activities including ABTS•+-scavenging activity, ferric antioxidant power (FRAP), and DPPH•-scavenging activity also showed significant variations. Dehulling significantly reduced DFC (55.09-79.30%), CFC (69.61-87.52%), and TTC (1.70-66.99%) in all the faba bean cultivars while increasing total protein content (9.31-17.69%). Dehulling also increased the total fat content (3.02-48.13%) in all the cultivars except Giant Three Seeded, a Japanese cultivar, which showed a 12.62% decrease. In contrast, dehulling exhibited varying results on fatty acids, TPC, TSC, and antioxidant activities among the faba bean cultivars. Accordingly, three cultivars: Primus from Hungary, Levens Marschbohne from Germany, and Ascott from France, exhibited simultaneous increases in nutritional levels after dehulling. Domasna-2 from Macedonia, Abawi# 1 from Peru, Seville from the United Kingdom, and Large Mazandran from Iran, on the other hand, exhibited marked reductions in nutritional levels, functional metabolites, and antioxidant activities. In general, our findings indicated that dehulling reduces crude fiber, dietary fiber, and tannin levels while increasing protein and fat contents in faba beans. However, fatty acids, phenolic content, and antioxidant activity may not be equally affected by dehulling and, therefore, specific genotypes should be inspected.

7.
Food Res Int ; 173(Pt 2): 113390, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803729

RESUMO

Sorghum, one of the prospective crops for addressing future food and nutrition security, has received attention in recent years due to its health-promoting compounds. It is known that several environmental and genetic factors affect the metabolite contents of dietary crops. This study investigated the diversity of different nutrients, functional metabolites, and antioxidant activity using three different assays in 53 sorghum landraces from Korea, China, Japan, Ethiopia, and South Africa. The effects of origin and seed color variations were also investigated. Total phenolic (TPC), total tannin (TTC), total fat, total protein, total dietary fiber, and total crude fiber contents all varied significantly among the sorghum landraces (p < 0.05). Using a gas chromatography-flame ionization detector, palmitic, stearic, oleic, linoleic, and linolenic acids were detected in all the sorghum landraces, and their content significantly varied (p < 0.05). Furthermore, four 3-deoxyanthocyanidins (luteolinidin, apigeninidin, 5-methoxyluteolinidin, and 7-methoxyapigeninidin) and two flavonoids (luteolin and apigenin) were detected in most of the landraces using liquid chromatography-tandem mass spectrometry, and their concentrations also significantly varied. Statistical analyses supported by multivariate tools demonstrated that seed color variation had a significant effect on TPC, TTC, DPPH• and ABTS•+ scavenging activities, and ferric-reducing antioxidant power, with yellow landraces having the highest and white landraces having the lowest values. Seed color variation also had a significant effect on dietary fiber, linoleic acid, linolenic acid, and luteolin contents. In contrast, all nutritional components and fatty acids except total protein and oleic acid were significantly affected by origin, while most 3-deoxyanthocyanidins and flavonoids were unaffected by both origin and seed color differences. This is the first study to report the effect of origin on sorghum seed metabolites and antioxidant activities, laying the groundwork for future studies. Moreover, this study identified superior landraces that could be good sources of health-promoting metabolites.


Assuntos
Antioxidantes , Sorghum , Antioxidantes/análise , Sorghum/química , Luteolina , Estudos Prospectivos , Cromatografia Gasosa-Espectrometria de Massas , Flavonoides/análise , Grão Comestível/química , Fenóis/análise , Fibras na Dieta/análise
8.
J Exp Pharmacol ; 15: 321-332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664179

RESUMO

Background: Aloe species are among the most significant plants with several applications. Many of the species, however, are underexplored, owing to their scarcity and limited geographical distribution. A. adigratana Reynolds, which is common in Ethiopia, is one of the little-studied and endangered Aloe species. Objective: This preliminary study focuses on the phytochemical screening, proximate analysis, essential oil content, and antifungal activities of A. adigratana leaf peels. Antifungal activities were also tested on the gels of the plant for comparison. Methods: Standard procedures were used for phytochemical and proximate composition studies. Essential oil analysis was performed using a gas chromatography-mass spectrometry instrument. Using the well-diffusion method, investigations on antifungal activity were performed on three clinically isolated specimens of dandruff-causing fungus; namely, Malassezia furfur, Malassezia restricta, and Malassezia globosa. Results: The leaf peels of A. adigratana contained alkaloids, flavonoids, tannins, and terpenes. The mean moisture, ash, and crude fat levels were 85.69, 92.20, and 8.00%, respectively, whereas the mean total protein and mean total carbohydrate values were 2.59 and 3.04%. Gas chromatography-mass spectrometry investigation confirmed the presence of fifteen essential oils. The most prevalent essential oil component was discovered to be phytol (33.78%), followed by decane (11.29%). In a dose-dependent way, the leaf latex and gel extracts prevented the growth of three dandruff-causing Malassezia fungal species (M. furfur, M. restricta, and M. globosa). Both the latex and gel demonstrated the maximum activity on M. globosa, the most prevalent fungus in the research area, with minimum inhibitory concentrations of 0.24 and 0.48 mg/mL and minimum fungicidal concentrations of 0.48 and 0.97 mg/mL, respectively. Conclusion: In general, the proximate and essential oil compositions of A. adigratana leaves were comparable to those of other Aloe species widely used in the food, cosmetic, and pharmaceutical industries, implying that A. adigratana could be a potential future plant for such industries.

9.
Front Nutr ; 10: 1238729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637957

RESUMO

Introduction: Sorghum, long regarded as one of the most underutilized crops, has received attention in recent years. As a result, conducting multidisciplinary studies on the potential and health benefits of sorghum resources is vital if they are to be fully exploited. In this study, the nutritional contents, functional metabolites, and antioxidant capacities of 23 sorghum breeding lines and three popular cultivars were assessed. Materials and method: All of the sorghum genotypes were grown under the same conditions, and mature seeds were hand-harvested. The metabolite contents and antioxidant capacities of sorghum seeds were assessed using standard protocols. Fatty acids were quantified using a gas chromatography-flame ionization detector, whereas flavonoids and 3-deoxyanthocyanidins were analyzed using a liquid chromatography-tandem mass spectrometry method. The data were analyzed using both univariate and multivariate statistical approaches. Results and discussion: Total protein (9.05-14.61%), total fat (2.99-6.91%), crude fiber (0.71-2.62%), dietary fiber (6.72-16.27%), total phenolic (0.92-10.38 mg GAE/g), and total tannin (0.68-434.22 mg CE/g) contents varied significantly across the sorghum genotypes (p < 0.05). Antioxidant capacity, measured using three assays, also differed significantly. Five fatty acids, including palmitic, stearic, oleic, linoleic, and linolenic acids, were found in all the sorghum genotypes with statistically different contents (p < 0.05). Furthermore, the majority of the sorghum genotypes contained four 3-deoxyanthocyanidins, including luteolinidin, apigeninidin, 5-methoxyluteolinidin, and 7-methoxyapigeninidin, as well as two dominant flavonoids, luteolin and apigenin. Compared to the cultivars, some breeding lines had significantly high levels of metabolites and antioxidant activities. On the other hand, statistical analysis showed that total tannin, total phenolic, and antioxidant capacities varied significantly across white, yellow, and orange genotypes. Principal component analysis was used to differentiate the sorghum genotypes based on seed color and antioxidant index levels. Pearson's correlation analysis revealed strong links between biosynthetically related metabolites and those with synergistic antioxidant properties. Conclusion: This research demonstrated the diversity of the sorghum resources investigated. Those genotypes with high levels of nutritional components, functional metabolites, and antioxidant activities could be used for consumption and breeding programs.

10.
Foods ; 12(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37297433

RESUMO

Enzymatic protein hydrolysis is a well-established method for improving the quality of dietary proteins, including edible insects. Finding effective enzymes from natural sources is becoming increasingly important. This study used nuruk extract concentrate (NEC), an enzyme-rich fermentation starter, to produce protein hydrolysate from defatted Tenebrio molitor (also called mealworm, MW). The nutritional, functional, and sensorial properties of the hydrolysate were then compared to those obtained using commercial proteases (alcalase and flavourzyme). The protease activities of the crude nuruk extract (CNE), NEC, alcalase, and flavourzyme were 6.78, 12.71, 11.07, and 12.45 units/mL, respectively. The degree of hydrolysis and yield of MW hydrolysis by NEC were 15.10 and 35.92% (w/w), respectively. MW hydrolysate was obtained using NEC and had a significantly higher free amino acid content (90.37 mg/g) than alcalase (53.01 mg/g) and flavourzyme (79.64 mg/g) hydrolysates. Furthermore, the NEC hydrolysis of MW increased the antioxidant and angiotensin-converting enzyme inhibitory activity, with IC50 values of 3.07 and 0.15 mg/mL, respectively. The enzymatic hydrolysis also improved sensory properties, including umaminess, sweetness, and saltiness. Overall, this study found that the NEC hydrolysis of MW outperformed commercial proteases regarding nutritional quality, sensory attributes, and biological activity. Therefore, nuruk could potentially replace commercial proteases, lowering the cost of enzymatic protein hydrolysis.

11.
Phytochem Rev ; 22(1): 275-308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36345415

RESUMO

There are approximately 260 known species in the genus Millettia, many of which are used in traditional medicine to treat human and other animal ailments in various parts of the world. Being in the Leguminosae (Fabaceae) family, Millettia species are rich sources of isoflavonoids. In the past three decades alone, several isoflavonoids originating from Millettia have been isolated, and their pharmacological activities have been evaluated against major diseases, such as cancer, inflammation, and diabetes. Despite such extensive research, no recent and comprehensive review of the phytochemistry and pharmacology of Millettia isoflavonoids is available. Furthermore, the structural diversity of isoflavonoids in Millettia species has rarely been reported. In this review, we comprehensively summarized the structural diversity of Millettia isoflavonoids, the methods used for their extraction and isolation protocols, and their pharmacological properties. According to the literature, 154 structurally diverse isoflavonoids were isolated and reported from the various tissues of nine well-known Millettia species. Prenylated isoflavonoids and rotenoids were the most dominant subclasses of isoflavonoids reported. Other subclasses of reported isoflavonoids include isoflavans, aglycone isoflavones, glycosylated isoflavones, geranylated isoflavonoids, phenylcoumarins, pterocarpans and coumaronochromenes. Although some isolated molecules showed promising pharmacological properties, such as anticancer, anti-inflammatory, estrogenic, and antibacterial activities, others remained untested. In general, this review highlights the potential of Millettia isoflavonoids and could improve their utilization in drug discovery and medicinal use processes. Supplementary Information: The online version contains supplementary material available at 10.1007/s11101-022-09845-w.

12.
Foods ; 11(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36360076

RESUMO

Peanut, an important oilseed crop cultivated worldwide as a dietary food, is a good food source with health benefits. To explore the potential benefits of peanuts as a food resource, 301 peanut accessions were evaluated to determine the effect of seed weight and genotype on total oil content and fatty acid composition. Total oil was extracted using the Soxhlet method and fatty acids were analyzed by gas chromatography mass spectrometry. Wide variations in the 100-seed weight, total oil content, and fatty acid profile were observed among genotypes and accession types. An effect of seed weight on the fatty acid composition of peanut seeds was observed. Increases in the oleic acid content and decreases in the linoleic acid content occurred in association with increases in the 100-seed weight. Moreover, the 100-seed weight, total oil content, and individual and total fatty acid contents, except arachidic acid, differed significantly (p < 0.001 or 0.05) among the accession types of landrace, cultivar, breeding line, and unknown. The discovery of this high diversity could contribute to further studies of peanut domestication and evolutionary classification. Our findings are important for the selection of peanut seeds with health benefits and development of new varieties of peanut with health benefits.

13.
Plants (Basel) ; 11(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807710

RESUMO

Amaranthus species are widely cultivated as dietary crops and are promising sources of phytochemical compounds with antioxidant properties. To explore Amaranthus as a potential medical resource, 289 accessions (nine species) were cultivated, and their agricultural characteristics, total phenolic content (TPC), rutin contents, and antioxidant activities [2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)] were studied. Wide variations in agricultural traits, phytochemical contents, and antioxidant activities were observed between the accessions and across species. The effects of agricultural traits were evaluated, and the results indicated that yellow-flowered amaranth genotypes could be important because of their high values of TPC, rutin contents, DPPH, and ABTS. In addition, leaf length, days until 50% flowering, days until 50% heading and days until maturity, showed positive correlations with TPC, rutin contents, DPPH, and ABTS. The whole dataset was subjected to principal component analysis, and distinctive aggregation was observed across the Amaranthus species. In total, 289 accessions were clustered into three groups, and seven genotypes were determined as being good medical resources due to their high phytochemical content and antioxidant activities. Our findings provide important information for the development of new varieties with high phytochemical contents and high levels of antioxidant activity.

14.
Antioxidants (Basel) ; 11(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740028

RESUMO

In this study, adzuki bean cultivars including Arari, Chilbopat, Geomguseul, and Hongeon were recently cultivated, and the concentrations of seven individual anthocyanins were determined in their seed coats for the first time. Moreover, the variations of total saponin content (TSC), total phenolic content (TPC), 1,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP) between defatted and undefatted extracts of whole seeds, seed coats, and dehulled seeds of each were analyzed. The anthocyanins were detected only in the black seed-coated cultivars and delphinidin-3-O-glucoside was dominant in both Geomguseul (12.46 mg/g) and Chilbopat (10.88 mg/g) followed by delphinidin-3-O-galactoside. TSC and TPC were in the ranges of 16.20−944.78 mg DE/g and 0.80−57.35 mg GAE/g, respectively, and each decreased in the order of seed coats > whole seeds > dehulled seeds regardless of extract type. The antioxidant activities also showed similar patterns of variation. Geomguseul seed coats outweighed the remaining cultivars in terms of TPC and FRAP activity (p < 0.05). Generally, significant variations of metabolite contents and antioxidant activities were observed between cultivars and across their seed parts (p < 0.05). Thence, black seed-coated adzuki beans could be excellent sources of anthocyanins and antioxidants.

15.
Food Chem ; 381: 132249, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114623

RESUMO

In this study, 54 soybean germplasms of different seed coat colors originated from America, China, Japan, and Korea were cultivated in Korea and analyzed for the contents of total oil, total protein, total phenolic, five fatty acids, and five isoflavones, and antioxidant activities using three assays. The soybeans showed significant variations (p < 0.05) of metabolite contents and antioxidant activities. Origin and seed coat color exhibited a slight or insignificant effect on total protein and total oil contents. In contrast, origin and seed coat color significantly affected the concentration of individual and total isoflavones, and total phenolics, with few exceptions. Whereas fatty acids were significantly affected by origin, seed coat color provided better information regarding the variations in antioxidant capacities. Together, multivariate and correlation analyses revealed important associations between biosynthetically-related metabolites. In general, origin and seed coat color differently influenced the concentration of different classes of metabolites and antioxidant activities.


Assuntos
Glycine max , Isoflavonas , Antioxidantes/análise , Isoflavonas/análise , Fenóis/análise , Sementes/química , Glycine max/metabolismo
16.
Plants (Basel) ; 10(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34685921

RESUMO

Proso millet (Panicum miliaceum L.) or broomcorn millet is among the most important food crops to be domesticated by humans; it is widely distributed in America, Europe, and Asia. In this study, we genotyped 578 accessions of P. miliaceum using 37 single-sequence repeat (SSR) markers, to study the genetic diversity and population structure of each accession. We also investigated total phenolic content (TPC) and superoxide dismutase (SOD) activity and performed association analysis using SSR markers. The results showed that genetic diversity and genetic distance were related to geographic location and the fixation index (Fst). Population structure analysis divided the population into three subpopulations. Based on 3 subpopulations, the population is divided into six clusters in consideration of geographical distribution characteristics and agronomic traits. Based on the genetic diversity, population structure, pairwise Fst, and gene flow analyses, we described the topological structure of the six proso millet subpopulations, and the geographic distribution and migration of each cluster. Comparison of the published cluster (cluster 1) with unique germplasms in Japan and South Korea suggested Turkey as a possible secondary center of origin and domestication (cluster 3) for the cluster. We also discovered a cluster domesticated in Nepal (cluster 6) that is adapted to high-latitude and high-altitude cultivation conditions. Differences in phenotypic characteristics, such as TPC, were observed between the clusters. The association analysis showed that TPC was associated with SSR-31, which explained 7.1% of the total variance, respectively. The development of markers associated with TPC and SOD will provide breeders with new tools to improve the quality of proso millet through marker-assisted selection.

17.
Antioxidants (Basel) ; 10(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34439461

RESUMO

Seed coat color is one of the main agronomical traits that determine the chemical quality of soybean seeds and has been used as a parameter during cultivar development. In this study, seeds of yellow (n = 10), greenish-yellow (n = 5), and light-yellow (n = 4) soybean accessions were evaluated for their contents of total protein, total oil, total phenolic (TPC), and five prominent fatty acids including palmitic acid (PA), stearic acid (SA), oleic acid (OA), linoleic acid (LA), and linolenic acid (LLA), relative to a control cultivar, and the effect of seed coat color on each was investigated. Antioxidant activity was also evaluated using 1,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP). The results showed significant variations of metabolite contents and antioxidant activities between the soybeans. The average TPC, DPPH-radical scavenging activity, and FRAP were each in the order of greenish-yellow > yellow > light-yellow soybeans. In contrast, light-yellow soybeans contained a high level of OA and low levels of SA, LA, and LLA, each except LA differing significantly from yellow and greenish-yellow soybeans (p < 0.05). Our findings suggest that greenish-yellow and light-yellow soybeans could be good sources of antioxidants and high-quality soybean oil, respectively.

18.
Mini Rev Med Chem ; 21(1): 23-34, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32552643

RESUMO

Phytolacca dodecandra L'Herit (Endod) is the most extensively studied plant among 35 known species in the genus Phytolacca (Family: Phytolaccaceae). The plant has been used as a viable treatment for various ailments, such as malaria, rabies, ascariasis, and skin disorders, in many parts of Africa. In Ethiopia, the dried and powdered Endod berries have been used for a long period of time as a detergent to clean clothes. Since the discovery of the molluscicidal activities of its berries more than five decades ago, P. dodecandra has been a research focus worldwide and several phytochemicals mainly of triterpenoids and saponins were reported. Additionally, various biological activities, including larvicidal, insecticidal, antibacterial, antifungal, and anti-inflammatory activities of its isolated compounds and crude extracts were investigated. Furthermore, some of the findings from pharmacological and phytochemical investigations were patented to be used in various medicinal formulations. The plant is still the subject of many investigations and hence, a thorough up-to-date review is required to provide comprehensive information needed for future exploitation of the plant. In this review, the phytochemical compositions and pharmacological activities are comprehensively addressed and discussed in details.


Assuntos
Compostos Fitoquímicos/farmacologia , Phytolacca dodecandra/química , Saponinas/farmacologia , Triterpenos/farmacologia , Ascaríase/tratamento farmacológico , Malária/tratamento farmacológico , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Raiva/tratamento farmacológico , Saponinas/química , Saponinas/isolamento & purificação , Dermatopatias/tratamento farmacológico , Triterpenos/química , Triterpenos/isolamento & purificação
19.
Sci Rep ; 10(1): 19960, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203918

RESUMO

Seed weight is regulated by several genes which in turn could affect the metabolite contents, yield, and quality of soybean seeds. Due to these, seed weight is receiving much attention in soybean breeding. In this study, seeds of 24 black soybean varieties and a reference genotype were grown in Korea, and grouped as small (< 13 g), medium (13-24 g), and large (> 24 g) seeds based on their seed weight. The contents of six anthocyanins, twelve isoflavones, and total phenolic, and the antioxidant activities were determined, and the association of each with seed weight was analyzed. The total anthocyanin (TAC) and total isoflavone (TIC) contents were in the ranges of 189.461-2633.454 mg/100 g and 2.110-5.777 mg/g, respectively and were significantly different among the black soybean varieties. By comparison, the average TAC and TIC were the highest in large seeds than in small and medium seeds while the total phenolic content (TPC) was in the order of small seeds > large seeds > medium seeds. Besides, large seeds showed the maximum 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity, whereas small seeds showed the maximum ferric reducing antioxidant power (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS) scavenging activities. FRAP activity was positively associated with TIC and TAC, the former association being significant. On the other hand, ABTS and DPPH activities were positively correlated to TPC, the later association being significant. Overall, our findings demonstrated the influence of seed weight on anthocyanin, isoflavone, and phenolic contents and antioxidant activities in black soybeans. Besides, the dominant anthocyanins and isoflavones were the principal contributors to the variations observed in the black soybean varieties, and hence, these components could be selectively targeted to discriminate a large population of black soybean genetic resources.


Assuntos
Antocianinas/análise , Antioxidantes/análise , Glycine max/química , Isoflavonas/análise , Fenóis/análise , Sementes/química , Antioxidantes/farmacologia , Sementes/anatomia & histologia
20.
Int J Mol Med ; 44(5): 1741-1752, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31545396

RESUMO

In the present study, a polyphenolic mixture was isolated from Seomae mugwort (SM; a native Korean variety of Artemisia argyi H.) via extraction with aqueous 70% methanol followed by the elution of ethyl acetate over a silica gel column. Each polyphenolic compound was analyzed using high­performance liquid chromatography coupled with tandem mass spectrometry, and compared with the literature. In addition to the 14 characterized components, one hydroxycinnamate, six flavonoids, and one lignan were reported for the first time, to the best our knowledge, in Artemisia argyi H. The anti­inflammatory properties of SM polyphenols were studied in lipopolysaccharide­treated RAW 264.7 macrophage cells. The SM polyphenols attenuated the activation of macrophages via the inhibition of nitric oxide production, nuclear factor­κB activation, the mRNA expression of inducible nitric oxide synthase, tumor necrosis factor α and interleukin­1ß, and the phosphorylation of mitogen­activated protein kinase. Our results suggested that SM polyphenols may have therapeutic potential for the treatment of inflammatory­related diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Artemisia/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Animais , Linhagem Celular , Flavonoides/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...