Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 161(5): 423-434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38393396

RESUMO

Aberrant glycosylation is an important factor in facilitating tumor progression and therapeutic resistance. In this study, using Wisteria floribunda agglutinin (WFA), we examined the expression of WFA-binding glycans (WFAG) in cholangiocarcinoma (CCA). The results showed that WFAG was highly detected in precancerous and cancerous lesions of human CCA tissues, although it was rarely detected in normal bile ducts. The positive signal of WFAG in the cancerous lesion accounted for 96.2% (50/52) of the cases. Overexpression of WFAG was significantly associated with lymph node and distant metastasis (P < 0.05). The study using the CCA hamster model showed that WFAG is elevated in preneoplastic and neoplastic bile ducts as early as 1 month after being infected with liver fluke and exposed to N-nitrosodimethylamine. Functional analysis was performed to reveal the role of WFAG in CCA. The CCA cell lines KKU-213A and KKU-213B were treated with WFA, followed by migration assay. Our data suggested that WFAG facilitates the migration of CCA cells via the activation of the Akt and ERK signaling pathways. In conclusion, we have demonstrated the association of WFAG with carcinogenesis and metastasis of CCA, suggesting its potential as a target for the treatment of the disease.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Lectinas de Plantas , Polissacarídeos , Receptores de N-Acetilglucosamina , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Animais , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Humanos , Lectinas de Plantas/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/química , Receptores de N-Acetilglucosamina/metabolismo , Cricetinae , Masculino , Carcinogênese/metabolismo , Carcinogênese/patologia , Metástase Neoplásica , Feminino , Pessoa de Meia-Idade , Movimento Celular/efeitos dos fármacos
2.
Biochim Biophys Acta Gen Subj ; 1867(12): 130486, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813201

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) exhibits poor response to the present chemotherapeutic agents and frequently develops drug resistance. Finding novel anticancer drugs might enhance patient outcomes. Tiliacorinine, a bisbenzylisoquinoline alkaloid from the Thai medicinal plant Tiliacora triandra, effectively induced apoptosis of human CCA cell lines and inhibited tumor growth in mice. Here, we elucidate further the molecular mechanisms underlining the cytotoxicity of tiliacorinine and its implication in overcoming gemcitabine-resistance of CCA cells. METHODS: Cytotoxicity of tiliacorinine against CCA cell lines was assessed using MTT assay. The molecular signaling was determined using Western blot analysis. Molecular docking simulations were applied to predict the binding affinity and orientation of tiliacorinine to the possible binding site(s) of the target proteins. RESULTS: Tiliacorinine induced apoptotic cell death of CCA cells in a dose- and time-dependent manner. Tiliacorinine significantly suppressed the expression of anti-apoptotic proteins, Bcl-xL and XIAP; activated apoptotic machinery proteins, caspase-3, caspase-9, and PARP; and decreased the levels of pAkt and pSTAT3. EGF/EGFR activation model and molecular docking simulations revealed EGFR, Akt, and STAT3 as potent targets of tiliacorinine. Molecular docking simulations indicated a strong binding affinity of tiliacorinine to the ATP-binding pockets of EGFR, PI3K, Akt, JAK2, and SH2 domain of STAT3. Tiliacorinine could synergize with gemcitabine and restore the cytotoxicity of gemcitabine against gemcitabine-resistant CCA cells. CONCLUSION: Tiliacorinine effectively induced apoptosis via binding and blocking the actions of EGFR, Akt, and STAT3. GENERAL SIGNIFICANCE: Tiliacorinine is a novel multi-kinase inhibitor and possibly a potent anti-cancer agent, in cancers with high activation of EGFR.


Assuntos
Antineoplásicos , Benzilisoquinolinas , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt , Simulação de Acoplamento Molecular , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Apoptose , Gencitabina , Antineoplásicos/farmacologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Receptores ErbB
3.
Cancer Sci ; 114(8): 3230-3246, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37026527

RESUMO

Cholangiocarcinoma (CCA) is an aggressive malignant tumor of bile duct epithelia. Recent evidence suggests the impact of cancer stem cells (CSC) on the therapeutic resistance of CCA; however, the knowledge of CSC in CCA is limited due to the lack of a CSC model. In this study, we successfully established a stable sphere-forming CCA stem-like cell, KKU-055-CSC, from the original CCA cell line, KKU-055. The KKU-055-CSC exhibits CSC characteristics, including: (1) the ability to grow stably and withstand continuous passage for a long period of culture in the stem cell medium, (2) high expression of stem cell markers, (3) low responsiveness to standard chemotherapy drugs, (4) multilineage differentiation, and (5) faster and constant expansive tumor formation in xenograft mouse models. To identify the CCA-CSC-associated pathway, we have undertaken a global proteomics and functional cluster/network analysis. Proteomics identified the 5925 proteins in total, and the significantly upregulated proteins in CSC compared with FCS-induced differentiated CSC and its parental cells were extracted. Network analysis revealed that high mobility group A1 (HMGA1) and Aurora A signaling through the signal transducer and activator of transcription 3 pathways were enriched in KKU-055-CSC. Knockdown of HMGA1 in KKU-055-CSC suppressed the expression of stem cell markers, induced the differentiation followed by cell proliferation, and enhanced sensitivity to chemotherapy drugs including Aurora A inhibitors. In silico analysis indicated that the expression of HMGA1 was correlated with Aurora A expressions and poor survival of CCA patients. In conclusion, we have established a unique CCA stem-like cell model and identified the HMGA1-Aurora A signaling as an important pathway for CSC-CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Camundongos , Animais , Proteína HMGA1a , Colangiocarcinoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
4.
Am J Cancer Res ; 12(9): 4140-4159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225633

RESUMO

Cholangiocarcinoma (CCA) is a lethal cancer in that the incidence is now increasing worldwide. N-acetylgalactosaminyltransferase 5 (GALNT5), an enzyme that initiates the first step of mucin type-O glycosylation, has been reported to promote aggressiveness of CCA cells via the epithelial to the mesenchymal transition (EMT) process, and Akt/Erk activation. In this study, the clinical and biological relevance of GALNT5 and the molecular mechanisms by which GALNT5 modulated EGFR in promoting CCA progression were examined. Using publicly available datasets, upregulation of GALNT5 in patient CCA tissues and its correlation with EGFR expression was noted. High levels of GALNT5 were significantly associated with the short survival of patients, suggesting a prognostic marker of GALNT5 for CCA. GALNT5 modulated EGFR expression as shown in CCA cell lines. Upregulation of GALNT5 significantly increased EGFR mRNA and protein in GALNT5 overexpressing cells, whereas suppression of GALNT5 expression gave the opposite results. The molecular dynamics simulations and MM/PB(GB)SA-based free energy calculations showed that O-glycosylation on the EGFR extracellular domain enhanced the structural stability, compactness, and H-bond formation of the EGF/GalNAc-EGFR complex compared with those of EGF/EGFR. This stabilized the growth factor binding site and fostered stronger interactions between EGF and EGFR. Using the EGF-induced EGFR activation model, GALNT5 was shown to mediate EGFR stability via a decreased rate of EGFR degradation and enhanced EGFR activity by increasing the binding affinity of EGF/EGFR that consequently increasing the activation of EGFR and its downstream effectors Akt and Erk. In summary, GALNT5 was upregulated in CCA tissues and associated with a worse prognosis. The study identified for the first time the impacts of GALNT5 on EGFR activity by increasing: 1) EGFR expression via a transcriptional-dependent mechanism, 2) EGFR stability by reducing EGFR degradation, and 3) EGFR activation through an increased binding affinity of EGF/EGFR which all together fostered the activation of EGFR. These results expanded the understanding of the molecular mechanism of how GALNT5 impacted CCA progression and suggested GALNT5 as a new target for therapeutic intervention against metastatic CCA.

5.
Asian Pac J Cancer Prev ; 23(10): 3379-3386, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308362

RESUMO

BACKGROUND: Berberine (BBR), a natural isoquinoline alkaloid, possesses diverse pharmacological properties and anti-cancer effects that have been demonstrated in many in vitro and in vivo studies. In this study, the inhibitory effects and molecular mechanism of low dose BBR on EMT-induced cell migration, and invasion capability of cholangiocarcinoma (CCA) cell lines were demonstrated. METHODS: The commercially available BBR chloride powder with purity ≥ 95% was used in this study. Effects of BBR on cell growth of two human CCA cell lines, KKU-213A and KKU-213B were measured using MTT assay. The progressive phenotypes-cell adhesion, migration, and invasion were evaluated using cell adhesion, wound healing, and Boyden chamber assays. Molecular docking analysis was performed to assess the possible binding mode of BBR against EGFR, Erk, STAT3 and Akt. The effects of BBR on the activations of EGF/EGFR and its downstream effectors were demonstrated using Western blotting. RESULTS: BBR inhibited growth of CCA cells in a dose dependent manner. At sub-cytotoxic dose, BBR significantly inhibited cell adhesion, migration, invasion and decreased expression of vimentin, slug, and VEGFA of both CCA cell lines. Molecular docking suggested the simultaneous inhibitory activity of BBR on EGFR, Erk, STAT3 and Akt. The Western blot analyses revealed that upon the EGF/EGFR activation, BBR considerably attenuated the activations of EGFR, Erk, STAT3 and Akt. CONCLUSION: Low dose of BBR suppresses EMT and thus aggressiveness of CCA cells, in part by its multi-kinase inhibitor property on EGFR and its downstream pathways.  BBR might be beneficial for therapy of human CCA.


Assuntos
Antineoplásicos , Berberina , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/patologia , Berberina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/uso terapêutico , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Movimento Celular , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ductos Biliares Intra-Hepáticos/patologia , Receptores ErbB/metabolismo
6.
Life Sci ; 302: 120648, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598658

RESUMO

AIMS: Lactic acidosis (LA) generated in tumor microenvironment promotes tumor metastasis and drug resistance. This study aimed to demonstrate the impacts and the mechanisms of LA on aldehyde dehydrogenase1A3 (ALDH1A3) in promoting aggressiveness and gemcitabine resistance in cholangiocarcinoma (CCA) cell lines. The clinical relevance and the molecular pathway related to the upregulation of ALDH1A3 in LA cells will be revealed. MAIN METHODS: ALDH1A3 expression and its clinical significances in CCA tissues were analyzed using the GEO databases. Human CCA cell lines, KKU-213A-LA and KKU-213B-LA maintained in the LA medium were studied and compared with its parental cells cultured in normal medium. Aggressive features-proliferation, colony formation, migration, invasion, and gemcitabine response were determined. Expression of ALDH1A3, EGFR and the downstream effectors were analyzed using real-time PCR and Western blotting. KEY FINDINGS: ALDH1A3 was upregulated in patient CCA tissues and correlated with LDHA and shorter survival of CCA patients. mRNA and protein of ALDH1A3 were increased in LA cells. Attenuation of ALDH1A3 expression by siRNA significantly reduced cell proliferation, colony formation, migration, invasion, and gemcitabine resistance of LA cells, and gemcitabine resistant cells. The EGF/EGFR signaling via Erk and STAT3 was pinned to be involved in the induction of ALDH1A3 expression in LA cells. The transcriptomic analysis from TCGA dataset supported the links between LDHA, EGFR and ALDH1A3 in several tumor tissues. SIGNIFICANCE: Lactic acidosis upregulated EGFR and ALDH1A3 expression, leading to the aggressiveness of CCA cells. The EGFR/ALDH1A3 axis could be a novel therapeutic target to eradicate metastatic CCA.


Assuntos
Acidose Láctica , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Aldeídos , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Colangiocarcinoma/metabolismo , Receptores ErbB/genética , Gencitabina , Microambiente Tumoral
7.
Nutr Cancer ; 74(5): 1734-1744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34353198

RESUMO

Diabetes mellitus (DM) is associated with an increased risk and progression of cholangiocarcinoma (CCA). High glucose underlying the association between DM and CCA by modulating the intracellular signaling has been demonstrated. However, the effects of DM and hyperglycemia on cell cycle machineries and progression of CCA remain elucidated. CCA cells, KKU-213A and KKU-213B were cultured in normal (NG, 5.6 mM) or high glucose (HG, 25 mM) resembling euglycemia and hyperglycemia. Western blotting was used to determine expressions of cell cycle machineries in CCA cells. The expression of cyclin A in CCA tissues from patients with or without hyperglycemia was determined by immunohistochemistry. Pan-cyclin dependent kinases (CDKs) inhibitor and silencing of cyclin A expression were investigated as a possible modality targeting CCA treatment in patients with DM. High glucose induced expression of cell cycle machinery proteins in both CCA cells. Among these, cyclin A was consistently and significantly upregulated. Nuclear cyclin A was significantly increased in tumor tissues from CCA patients with hyperglycemia and was significantly associated with post-operative survival of shorter than 5 mo. Silencing cyclin A expression sensitized CCA cells to pan-CDKs inhibitor, suggesting the combined treatment as an alternative approach for treatment of CCA patients with DM.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Diabetes Mellitus , Hiperglicemia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Ciclina A/metabolismo , Ciclina A/farmacologia , Ciclinas/metabolismo , Glucose/farmacologia , Humanos , Inibidores de Proteínas Quinases/farmacologia , Regulação para Cima
8.
Heliyon ; 7(4): e06846, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33997388

RESUMO

Forkhead box M1 (FOXM1) is a transcriptional factor which plays an important role in oncogenesis. Four FOXM1 isoforms, FOXM1a, FOXM1b, FOXM1c and FOXM1d, are known so far. Different FOXM1 isoforms influence progression of cancer in different cancer types. In this study, the FOXM1c isoform and its impact in cholangiocarcinoma (CCA) was identified. FOXM1c was found to be the predominant isoform in patient-CCA tissues and cell lines. Detection of FOXM1c expression in CCA tissues reflected the worse prognosis of the patients, namely the advanced stage and shorter survival. Suppression of FOXM1 expression using siRNA considerably reduced migration and invasion abilities of CCA cell lines. RNA sequencing analysis revealed claudin-1 as a target of FOXM1. FOXM1 exhibited a negative correlation with claudin-1 expression which was demonstrated in patient CCA tissues and cell lines. FOXM1 may be a potential target for therapeutic treatment of the metastatic CCA.

9.
Life Sci ; 271: 119114, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33513399

RESUMO

AIMS: Epidemiological studies indicate diabetes mellitus and hyperglycemia as risk factors of cancers including cholangiocarcinoma (CCA). How high glucose promotes cancer development and progression, however, is still unrevealed. In this study, insight into the molecular pathway of high glucose promoting progression of CCA cells was investigated. MAIN METHODS: Human CCA cell lines, KKU-213A and KKU-213B were cultured in normal glucose (NG; 5.56 mM) or high glucose (HG; 25 mM) and used as NG and HG cells. Forkhead box M1 (FOXM1) expression was transiently suppressed using siFOXM1. Western blotting and image analysis were employed to semi-quantitatively determine the expression levels of the specified proteins. The migration and invasion of CCA cells were revealed using Boyden chamber assays. KEY FINDINGS: All HG cells exhibited higher expression of FOXM1 than the corresponding NG cells in a dose dependent manner. Suppression of FOXM1 expression by siFOXM1 significantly reduced migration and invasion abilities of CCA cells by suppression of Slug and MMP2 expression. Inhibition of STAT3 activation using Stattic, significantly suppressed expression of FOXM1 and Slug and decreased migration and invasion abilities of HG cells. In addition, EGFR expression was significantly higher in HG cells than NG cells and increased dependently with glucose concentration. Inhibition of EGFR activation by cetuximab significantly suppressed STAT3 activation and FOXM1 expression. SIGNIFICANCE: The mechanism of high glucose promoting progression of CCA cells was revealed to be via in part by upregulation of FOXM1 expression under EGF/EGFR and STAT3 dependent activation.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Proteína Forkhead Box M1/biossíntese , Glucose/toxicidade , Fator de Transcrição STAT3/metabolismo , Neoplasias dos Ductos Biliares/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Colangiocarcinoma/genética , Progressão da Doença , Relação Dose-Resposta a Droga , Receptores ErbB/metabolismo , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica , Glucose/administração & dosagem , Humanos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
10.
Glycobiology ; 30(5): 312-324, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-31868214

RESUMO

Mucin type O-glycosylation is a posttranslational modification of membrane and secretory proteins. Transferring of N-acetylgalactosamine, the first sugar of O-glycosylation, is catalyzed by one of the 20 isoforms of polypeptide N-acetylgalactosaminyltransferases (GALNTs). In this study, Vicia villosa lectin (VVL), a lectin that recognizes O-GalNAcylated glycans, was used to detect VVL-binding glycans (VBGs) in cholangiocarcinoma (CCA). The elevation of VBGs in tumor tissues of the liver fluke associated with CCA from hamsters and patients was noted. VBGs were detected in hyperplastic/dysplastic bile ducts and CCA but not in normal biliary epithelia and hepatocytes, indicating the association of VBGs with CCA development and progression. GALNT5 was shown to be the major isoform found in human CCA cell lines with high VBG expression. Suppression of GALNT5 expression using siRNA significantly reduced VBG expression, signifying the connection of GALNT5 and VBGs observed. Knocked-down GALNT5 expression considerably inhibited proliferation, migration and invasion of CCA cells. Increased expression of GALNT5 using pcDNA3.1-GALNT5 expression vector induced invasive phenotypes in CCA cells with low GALNT5 expression. Increasing of claudin-1 and decreasing of slug and vimentin expression together with inactivation of Akt/Erk signaling were noted in GALNT5 knocked-down cells. These observations were reversed in GALNT5 over-expressing cells. GALNT5-modulated progression of CCA cells was shown to be, in part, via GALNT5-mediated autocrine/paracrine factors that stimulated activations of Akt/Erk signaling and the epithelial to mesenchymal transition process. GALNT5 and its O-GalNAcylated products may have important roles in promoting progression of CCA and could possibly be novel targets for treatment of metastatic CCA.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Transdução de Sinais , Animais , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Glicosilação , Humanos , Mesocricetus , N-Acetilgalactosaminiltransferases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas
11.
Mol Oncol ; 13(2): 338-357, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444036

RESUMO

O-GlcNAcylation is a key post-translational modification that modifies the functions of proteins. Associations between O-GlcNAcylation, shorter survival of cholangiocarcinoma (CCA) patients, and increased migration/invasion of CCA cell lines have been reported. However, the specific O-GlcNAcylated proteins (OGPs) that participate in promotion of CCA progression are poorly understood. OGPs were isolated from human CCA cell lines, KKU-213 and KKU-214, using a click chemistry-based enzymatic labeling system, identified using LC-MS/MS, and searched against an OGP database. From the proteomic analysis, a total of 21 OGPs related to cancer progression were identified, of which 12 have not been previously reported. Among these, hnRNP-K, a multifaceted RNA- and DNA-binding protein known as a pre-mRNA-binding protein, was one of the most abundantly expressed, suggesting its involvement in CCA progression. O-GlcNAcylation of hnRNP-K was further verified by anti-OGP/anti-hnRNP-K immunoprecipitations and sWGA pull-down assays. The perpetuation of CCA by hnRNP-K was evaluated using siRNA, which revealed modulation of cyclin D1, XIAP, EMT markers, and MMP2 and MMP7 expression. In native CCA cells, hnRNP-K was primarily localized in the nucleus; however, when O-GlcNAcylation was suppressed, hnRNP-K was retained in the cytoplasm. These data signify an association between nuclear accumulation of hnRNP-K and the migratory capabilities of CCA cells. In human CCA tissues, expression of nuclear hnRNP-K was positively correlated with high O-GlcNAcylation levels, metastatic stage, and shorter survival of CCA patients. This study demonstrates the significance of O-GlcNAcylation on the nuclear translocation of hnRNP-K and its impact on the progression of CCA.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Núcleo Celular/metabolismo , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Progressão da Doença , Glucosamina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Metástase Neoplásica , Transporte Proteico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA