Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(7): 3304-3312, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37364888

RESUMO

Fluids composed of biosourced rod-like colloids (RC) and rod-like polymers (RP) have been extensively studied due to various promising applications relying on their flow-induced orientation (e.g., fiber spinning). However, the relationship between RC and RP alignment and the resulting rheological properties is unclear due to experimental challenges. We investigate the alignment-rheology relationship for a variety of biosourced RC and RP, including cellulose-based particles, filamentous viruses, and xanthan gum, by simultaneous measurements of the shear viscosity and fluid anisotropy under rheometric shear flows. For each system, the RC and RP contribution to the fluid viscosity, captured by the specific viscosity ηsp, follows a universal trend with the extent of the RC and RP alignment independent of concentration. We further exploit this unique rheological-structural link to retrieve a dimensionless parameter (ß) directly proportional to ηsp at zero shear rate (η0,sp), a parameter often difficult to access from experimental rheometry for RC and RP with relatively long contour lengths. Our results highlight the unique link between the flow-induced structural and rheological changes occurring in RC and RP fluids. We envision that our findings will be relevant in building and testing microstructural constitutive models to predict the flow-induced structural and rheological evolution of fluids containing RC and RP.


Assuntos
Coloides , Polímeros , Polímeros/química , Celulose , Reologia , Viscosidade
2.
Soft Matter ; 18(21): 4136-4145, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583141

RESUMO

Multi-component fluids with phase transitions show a plethora of fascinating phenomena with rich physics. Here we report on a transition in the growth mode of plasmonic bubbles in binary liquids. By employing high-speed imaging we reveal that the transition is from slow evaporative to fast convective growth and accompanied by a sudden increase in radius. The transition occurs as the three-phase contact line reaches the spinodal temperature of the more volatile component leading to massive, selective evaporation. This creates a strong solutal Marangoni flow along the bubble which marks the beginning of convective growth. We support this interpretation by simulations. After the transition the bubble starts to oscillate in position and in shape. Though different in magnitude the frequencies of both oscillations follow the same power law , which is characteristic of bubble shape oscillations, with the surface tension σ as the restoring force and the bubble's added mass as inertia. The transitions and the oscillations both induce a strong motion in the surrounding liquid, opening doors for various applications where local mixing is beneficial.

3.
Proc Natl Acad Sci U S A ; 118(23)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088844

RESUMO

The physicochemical hydrodynamics of bubbles and droplets out of equilibrium, in particular with phase transitions, display surprisingly rich and often counterintuitive phenomena. Here we experimentally and theoretically study the nucleation and early evolution of plasmonic bubbles in a binary liquid consisting of water and ethanol. Remarkably, the submillimeter plasmonic bubble is found to be periodically attracted to and repelled from the nanoparticle-decorated substrate, with frequencies of around a few kilohertz. We identify the competition between solutal and thermal Marangoni forces as the origin of the periodic bouncing. The former arises due to the selective vaporization of ethanol at the substrate's side of the bubble, leading to a solutal Marangoni flow toward the hot substrate, which pushes the bubble away. The latter arises due to the temperature gradient across the bubble, leading to a thermal Marangoni flow away from the substrate, which sucks the bubble toward it. We study the dependence of the frequency of the bouncing phenomenon from the control parameters of the system, namely the ethanol fraction and the laser power for the plasmonic heating. Our findings can be generalized to boiling and electrolytically or catalytically generated bubbles in multicomponent liquids.

4.
J Phys Chem Lett ; 11(20): 8631-8637, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32960058

RESUMO

The growth of surface plasmonic microbubbles in binary water/ethanol solutions is experimentally studied. The microbubbles are generated by illuminating a gold nanoparticle array with a continuous wave laser. Plasmonic bubbles exhibit ethanol concentration-dependent behaviors. For low ethanol concentrations (fe) of ≲67.5%, bubbles do not exist at the solid-liquid interface. For high fe values of ≳80%, the bubbles behave as in pure ethanol. Only in an intermediate window of 67.5% ≲ fe ≲ 80% do we find sessile plasmonic bubbles with a highly nontrivial temporal evolution, in which as a function of time three phases can be discerned. (1) In the first phase, the microbubbles grow, while wiggling. (2) As soon as the wiggling stops, the microbubbles enter the second phase in which they suddenly shrink, followed by (3) a steady reentrant growth phase. Our experiments reveal that the sudden shrinkage of the microbubbles in the second regime is caused by a depinning event of the three-phase contact line. We systematically vary the ethanol concentration, laser power, and laser spot size to unravel water recondensation as the underlying mechanism of the sudden bubble shrinkage in phase 2.

5.
J Phys Chem C Nanomater Interfaces ; 124(4): 2591-2597, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32030112

RESUMO

Metal nanoparticles under laser irradiation can produce enormous heat due to surface plasmon resonance. When submerged in a liquid, this can lead to the nucleation of plasmonic bubbles. In the very early stage, the nucleation of a giant vapor bubble was observed with an ultrahigh-speed camera. In this study, the formation of this giant bubble on gold nanoparticles in six binary liquid combinations has been investigated. We find that the time delay between the beginning of the laser heating and the bubble nucleation is determined by the absolute amount of dissolved gas in the liquid. Moreover, the bubble volume mainly depends on the vaporization energy of the liquid, consisting of the latent heat of vaporization and the energy needed to reach the boiling temperature. Our results contribute to controlling the initial giant bubble nucleation and have strong bearings on applications of such bubbles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...