Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(15): 4157-4160, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527142

RESUMO

We report on a novel, to the best of our knowledge, active probe for scanning near-field optical microscopy (SNOM). A fluorescent nanosphere, acting as the secondary source, is grafted in an electrostatic manner at the apex of a polymer tip integrated into the extremity of an optical fiber. Thanks to the high photostability and sensitivity of the secondary source, the near-field interaction with a gold nanocube is investigated. It is shown that the spatial resolution is well defined by the size of the fluorescent nanosphere. The polarization-dependent near-field images, which are consistent with the simulation, are ascribed to the local excitation rate enhancement. Meanwhile, measurement of the distance-dependent fluorescence lifetime of the nanosphere provides strong evidence that the local density of states is modified so that extra information on nano-emitters can be extracted during near-field scanning. This advanced active probe can thus potentially broaden the range of applications to include nanoscale thermal imaging, biochemical sensors, and the manipulation of nanoparticles.

2.
Biophys Rep (N Y) ; 1(2): 100021, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36425460

RESUMO

Over the last decades, several techniques have been developed to study cell adhesion; however, they present significant shortcomings. Such techniques mostly focus on strong adhesion related to specific protein-protein associations, such as ligand-receptor binding in focal adhesions. Therefore, weak adhesion, related to less specific or nonspecific cell-substrate interactions, are rarely addressed. Hence, we propose in this work a complete investigation of cell adhesion, from highly specific to nonspecific adhesiveness, using variable-angle total internal reflection fluorescence (vaTIRF) nanoscopy. This technique allows us to map in real time cell topography with a nanometric axial resolution, along with cell cortex refractive index. These two key parameters allow us to distinguish high and low adhesive cell-substrate contacts. Furthermore, vaTIRF provides cell-substrate binding energy, thus revealing a correlation between cell contractility and cell-substrate binding energy. Here, we highlight the quantitative measurements achieved by vaTIRF on U87MG glioma cells expressing different amounts of α 5 integrins and distinct motility on fibronectin. Regarding integrin expression level, data extracted from vaTIRF measurements, such as the number and size of high adhesive contacts per cell, corroborate the adhesiveness of U87MG cells as intended. Interestingly enough, we found that cells overexpressing α 5 integrins present a higher contractility and lower adhesion energy.

3.
Nat Commun ; 11(1): 3414, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641727

RESUMO

Hybrid plasmonic nano-emitters based on the combination of quantum dot emitters (QD) and plasmonic nanoantennas open up new perspectives in the control of light. However, precise positioning of any active medium at the nanoscale constitutes a challenge. Here, we report on the optimal overlap of antenna's near-field and active medium whose spatial distribution is controlled via a plasmon-triggered 2-photon polymerization of a photosensitive formulation containing QDs. Au nanoparticles of various geometries are considered. The response of these hybrid nano-emitters is shown to be highly sensitive to the light polarization. Different light emission states are evidenced by photoluminescence measurements. These states correspond to polarization-sensitive nanoscale overlap between the exciting local field and the active medium distribution. The decrease of the QD concentration within the monomer formulation allows trapping of a single quantum dot in the vicinity of the Au particle. The latter objects show polarization-dependent switching in the single-photon regime.

4.
Colloids Surf B Biointerfaces ; 152: 152-158, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28107706

RESUMO

This article presents the evidence for the significant effect of copper accelerating the bacterial inactivation on Ti-Nb-Ta-Zr (TNTZ) sputtered films on glass up to a Cu content of 8.3 at.%. These films were deposited by dc magnetron co-sputtering of an alloy target Ti-23Nb-0.7Ta-2Zr (at.%) and a Cu target. The fastest bacterial inactivation of E. coli on this later TNTZ-Cu surface proceeded within ∼75min. The films deposited by magnetron sputtering are chemically homogenous. The film roughness evaluated by atomic force spectroscopy (AFM) on the TNTZ-Cu 8.3 at.% Cu sample presented an RMS-value of 20.1nm being the highest RMS of any Cu-sputtered TNTZ sample. The implication of the RMS value found for this sample leading to the fastest interfacial bacterial inactivation kinetics is also discussed. Values for the Young's modulus and hardness are reported for the TNTZ films in the presence of various Cu-contents. Evaluation of the bacterial inactivation kinetics of E. coli under low intensity actinic hospital light and in the dark was carried out. The stable repetitive bacterial inactivation was consistent with the extremely low Cu-ion release from the samples of 0.4 ppb. Evidence is presented by the bacterial inactivation dependence on the applied light intensity for the intervention of Cu as semiconductor CuO during the bacterial inactivation at the TNTZ-Cu interface. The mechanism of CuO-intervention under light is suggested based on the pH/and potential changes registered during bacterial disinfection.


Assuntos
Antibacterianos/química , Cobre/química , Luz , Membranas Artificiais , Nióbio/química , Tantálio/química , Titânio/química , Zircônio/química , Antibacterianos/farmacologia , Módulo de Elasticidade , Escherichia coli/efeitos dos fármacos , Microscopia de Força Atômica
5.
Biophys J ; 111(6): 1316-1327, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653490

RESUMO

We propose an improved version of variable-angle total internal reflection fluorescence microscopy (vaTIRFM) adapted to modern TIRF setup. This technique involves the recording of a stack of TIRF images, by gradually increasing the incident angle of the light beam on the sample. A comprehensive theory was developed to extract the membrane/substrate separation distance from fluorescently labeled cell membranes. A straightforward image processing was then established to compute the topography of cells with a nanometric axial resolution, typically 10-20 nm. To highlight the new opportunities offered by vaTIRFM to quantify adhesion process of motile cells, adhesion of MDA-MB-231 cancer cells on glass substrate coated with fibronectin was examined.


Assuntos
Adesão Celular , Forma Celular , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Algoritmos , Calibragem , Linhagem Celular Tumoral , Membrana Celular , Campos Eletromagnéticos , Desenho de Equipamento , Fibronectinas , Fluorescência , Vidro , Humanos , Microscopia de Fluorescência/instrumentação , Modelos Teóricos
6.
Opt Lett ; 39(4): 869-72, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562228

RESUMO

We present a simple modification of a standard total internal reflection fluorescence microscope to achieve nanometric axial resolution, typically ≈10 nm. The technique is based on a normalization of total internal reflection images by conventional epi-illumination images. We demonstrate the potential of our method to study the adhesion of phopholipid giant unilamellar vesicles.


Assuntos
Microscopia de Fluorescência/métodos , Membrana Celular/metabolismo , Processamento de Imagem Assistida por Computador , Lipossomas Unilamelares/metabolismo
7.
ACS Appl Mater Interfaces ; 6(1): 219-27, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24281403

RESUMO

In the present work, the standard monometallic localized surface plasmon resonance (LSPR) biosensing sensitivity is highly improved when using a new system based on glass substrates modified with high-temperature annealed gold/silver bimetallic nanoparticles (Au/Ag bimetallic NPs) coated with polydopamine films before biomolecule specific immobilization. Thus, different zones of bimetallic NPs are spatially created onto a glass support thanks to a commercial transmission electron microscopy (TEM) grid marker in combination with two sequential evaporations of continuous films of gold (4 nm) and silver (2 nm) and followed by annealing at 500 °C for 8 h. By using the scanning electron microscopy (SEM), it is found that annealed Au/Ag bimetallic NPs have uniform size and shape distribution that exhibited a sharper well-defined LSPR resonant peak when compared with that of monometallic Au NPs and thereby contributing to an improved sensitivity in LSPR biosensor application. The controlled micropatterns consisting of bimetallic particles are used in the construction of LSPR biochips for high-throughput detection of different concentrations of a model antigen named bovine serum albumin (BSA) on a single glass sample, with a lower limit of detection of 0.01 ng/mL under the optimized conditions.

8.
Sci Rep ; 3: 2672, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24037020

RESUMO

Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells.

9.
Opt Express ; 21(1): 30-8, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23388893

RESUMO

In numerous applications of optical scanning microscopy, a reference tapered fiber lens with high symmetry at sub-wavelength scale remains a challenge. Here, we demonstrate the ability to manufacture it with a wide range of geometry control, either for the length from several hundred nanometers to several hundred microns, or for the curvature radius from several tens of nanometers to several microns on the endface of a single mode fiber. On this basis, a scanning optical microscope has been developed, which allows for fast characterization of various sub-wavelength tapered fiber lenses. Focal position and depth of microlenses with different geometries have been determined to be ranged from several hundreds of nanometers to several microns. FDTD calculations are consistent with experimental results.

10.
Biochim Biophys Acta ; 1818(11): 2477-85, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22640696

RESUMO

Diffusion time distribution analysis has been employed to highlight the microfluidity fingerprint of plasma membrane of living cells. Diffusion time measurements were obtained through fluorescence correlation spectroscopy performed at the single cell level, over various eukaryotic cell lines (MCF7, LR73, KB3.1, MESSA and MDCKII). The nonsymmetric profile of the diffusion time distributions established experimentally, is discussed according to Monte Carlo simulations, which reproduce the diffusion of the fluorescent probe in heterogeneous membrane.


Assuntos
Permeabilidade da Membrana Celular , Espectrometria de Fluorescência/métodos , Animais , Linhagem Celular , Humanos , Método de Monte Carlo
11.
Appl Opt ; 50(9): 1272-9, 2011 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-21460999

RESUMO

We present a heterodyne grating interferometer based on a quasi-common-optical-path (QCOP) design for a two-degrees-of-freedom (DOF) straightness measurement. Two half-wave plates are utilized to rotate the polarizations of two orthogonally polarized beams. The grating movement can be calculated by measuring the phase difference variation in each axis. The experimental results demonstrate that our method has the ability to measure two-DOF straightness and still maintain high system stability. The proposed and demonstrated method, which relies on heterodyne interferometric phase measurement combined with the QCOP configuration, has the advantages of high measurement resolution, relatively straightforward operation, and high system stability.

12.
J Biomed Opt ; 14(3): 034030, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19566323

RESUMO

Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/química , Microfluídica/métodos , Neoplasias Ovarianas/química , Neoplasias Ovarianas/tratamento farmacológico , Espectrometria de Fluorescência/métodos , Algoritmos , Animais , Álcool Benzílico/farmacologia , Células CHO , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Ciclosporina/farmacologia , Difusão , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Desenho de Equipamento , Feminino , Lipídeos de Membrana/química , Camundongos , Modelos Biológicos , Estatísticas não Paramétricas , Fatores de Tempo , Verapamil/farmacologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...