Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancers (Basel) ; 16(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38730676

RESUMO

While ex vivo confocal laser scanning microscopy has previously demonstrated its utility in most common skin diseases, its use in the assessment of dermatological entities with lower incidence remains unexplored in most cases. We therefore aimed to evaluate the diagnostic efficacy of some rare skin tumors as well as a few inflammatory skin diseases, that have not yet been studied in ex vivo confocal laser scanning microscopy. A total of 50 tissue samples comprising 10 healthy controls, 10 basal cell carcinoma, 10 squamous cell carcinoma, and 20 rare skin conditions were imaged using the newest generation ex vivo confocal microscopy (Vivascope 2500 M-G4, Vivascope GmbH, Munich, Germany). Three blinded investigators were asked to identify characteristic features of rare skin disorders and distinguish them from more common skin diseases in the ex vivo confocal microscopy images. Our findings present the capability of ex vivo confocal microscopy to display distinctive morphologic patterns in common and rare skin diseases. As might be expected, we found a strong correlation between imaging experience and diagnostic accuracy. While the imaging inexperienced dermatohistopathologist reached 60% concordance, the imaging-trained dermatologist obtained 88% agreement with dermatohistopathology. The imaging-trained dermatohistopathologist achieved concordance up to 92% with gold-standard dermatohistopathology. This study highlights the potential of ex vivo confocal laser scanning microscopy as a promising adjunct to conventional dermatohistopathology for the early and precise identification of rare dermatological disorders.

5.
J Dtsch Dermatol Ges ; 22(3): 367-375, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279541

RESUMO

BACKGROUND AND OBJECTIVES: Onychomycosis is common and important to distinguish from other nail diseases. Rapid and accurate diagnosis is necessary for optimal patient treatment and outcome. Non-invasive diagnostic tools have increasing potential for nail diseases including onychomycosis. This study evaluated line-field confocal optical coherence tomography (LC-OCT) as a rapid non-invasive tool for diagnosing onychomycosis as compared to confocal laser scanning microscopy (CLSM), optical coherence tomography (OCT), and conventional methods. PATIENTS AND METHODS: In this prospective study 86 patients with clinically suspected onychomycosis and 14 controls were examined using LC-OCT, OCT, and CLSM. KOH-preparation, fungal culture, PCR, and histopathology were used as comparative conventional methods. RESULTS: LC-OCT had the highest sensitivity and negative predictive value of all methods used, closely followed by PCR and OCT. Specificity and positive predictive value of LC-OCT were as high as with CLSM, while OCT scored much lower. The gold standard technique, fungal culture, showed the lowest sensitivity and negative predictive value. Only PCR and culture allowed species differentiation. CONCLUSIONS: LC-OCT enables quick and non-invasive detection of onychomycosis, with advantages over CLSM and OCT, and similar diagnostic accuracy to PCR but lacking species differentiation. For accurate nail examination, LC-OCT requires well-trained and experienced operators.


Assuntos
Doenças da Unha , Onicomicose , Humanos , Onicomicose/diagnóstico , Tomografia de Coerência Óptica/métodos , Estudos Prospectivos , Unhas/diagnóstico por imagem , Unhas/patologia , Microscopia Confocal
6.
Cancers (Basel) ; 15(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37760425

RESUMO

Actinic keratosis (AK) is a common skin cancer in situ that can progress to invasive SCC. Line-field confocal optical coherence tomography (LC-OCT) has emerged as a non-invasive imaging technique that can aid in diagnosis. Recently, machine-learning algorithms have been developed that can automatically assess the PRO score of AKs based on the dermo-epidermal junction's (DEJ's) protrusion on LC-OCT images. A dataset of 19.898 LC-OCT images from 80 histologically confirmed AK lesions was used to test the performance of a previous validated artificial intelligence (AI)-based LC-OCT assessment algorithm. AI-based PRO score assessment was compared to the imaging experts' visual score. Additionally, undulation of the DEJ, the number of protrusions detected within the image, and the maximum depth of the protrusions were computed. Our results show that AI-automated PRO grading is highly comparable to the visual score, with an agreement of 71.3% for the lesions evaluated. Furthermore, this AI-based assessment was significantly faster than the regular visual PRO score assessment. The results confirm our previous findings of the pilot study in a larger cohort that the AI-based grading of LC-OCT images is a reliable and fast tool to optimize the efficiency of visual PRO score grading. This technology has the potential to improve the accuracy and speed of AK diagnosis and may lead to better clinical outcomes for patients.

7.
Front Aging Neurosci ; 14: 854031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431893

RESUMO

We undertook longitudinal ß-amyloid positron emission tomography (Aß-PET) imaging as a translational tool for monitoring of chronic treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone in Aß model mice. We thus tested the hypothesis this treatment would rescue from increases of the Aß-PET signal while promoting spatial learning and preservation of synaptic density. Here, we investigated longitudinally for 5 months PS2APP mice (N = 23; baseline age: 8 months) and App NL-G-F mice (N = 37; baseline age: 5 months) using Aß-PET. Groups of mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial memory performance and confirmed terminal PET findings by immunohistochemical and biochemistry analyses. Surprisingly, Aß-PET and immunohistochemistry revealed a shift toward higher fibrillary composition of Aß-plaques during upon chronic pioglitazone treatment. Nonetheless, synaptic density and spatial learning were improved in transgenic mice with pioglitazone treatment, in association with the increased plaque fibrillarity. These translational data suggest that a shift toward higher plaque fibrillarity protects cognitive function and brain integrity. Increases in the Aß-PET signal upon immunomodulatory treatments targeting Aß aggregation can thus be protective.

8.
Sci Transl Med ; 13(615): eabe5640, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644146

RESUMO

2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) is widely used to study cerebral glucose metabolism. Here, we investigated whether the FDG-PET signal is directly influenced by microglial glucose uptake in mouse models and patients with neurodegenerative diseases. Using a recently developed approach for cell sorting after FDG injection, we found that, at cellular resolution, microglia displayed higher glucose uptake than neurons and astrocytes. Alterations in microglial glucose uptake were responsible for both the FDG-PET signal decrease in Trem2-deficient mice and the FDG-PET signal increase in mouse models for amyloidosis. Thus, opposite microglial activation states determine the differential FDG uptake. Consistently, 12 patients with Alzheimer's disease and 21 patients with four-repeat tauopathies also exhibited a positive association between glucose uptake and microglial activity as determined by 18F-GE-180 18-kDa translocator protein PET (TSPO-PET) in preserved brain regions, indicating that the cerebral glucose uptake in humans is also strongly influenced by microglial activity. Our findings suggest that microglia activation states are responsible for FDG-PET signal alterations in patients with neurodegenerative diseases and mouse models for amyloidosis. Microglial activation states should therefore be considered when performing FDG-PET.


Assuntos
Fluordesoxiglucose F18 , Doenças Neurodegenerativas , Humanos , Glucose , Microglia , Doenças Neurodegenerativas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Camundongos
9.
Theranostics ; 11(18): 8964-8976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522221

RESUMO

Modulation of the innate immune system is emerging as a promising therapeutic strategy against Alzheimer's disease (AD). However, determinants of a beneficial therapeutic effect are ill-understood. Thus, we investigated the potential of 18 kDa translocator protein positron-emission-tomography (TSPO-PET) for assessment of microglial activation in mouse brain before and during chronic immunomodulation. Methods: Serial TSPO-PET was performed during five months of chronic microglia modulation by stimulation of the peroxisome proliferator-activated receptor (PPAR)-γ with pioglitazone in two different mouse models of AD (PS2APP, AppNL-G-F ). Using mixed statistical models on longitudinal TSPO-PET data, we tested for effects of therapy and sex on treatment response. We tested correlations of baseline with longitudinal measures of TSPO-PET, and correlations between PET results with spatial learning performance and ß-amyloid accumulation of individual mice. Immunohistochemistry was used to determine the molecular source of the TSPO-PET signal. Results: Pioglitazone-treated female PS2APP and AppNL-G-F mice showed attenuation of the longitudinal increases in TSPO-PET signal when compared to vehicle controls, whereas treated male AppNL-G-F mice showed the opposite effect. Baseline TSPO-PET strongly predicted changes in microglial activation in treated mice (R = -0.874, p < 0.0001) but not in vehicle controls (R = -0.356, p = 0.081). Reduced TSPO-PET signal upon pharmacological treatment was associated with better spatial learning despite higher fibrillar ß-amyloid accumulation. Immunohistochemistry confirmed activated microglia to be the source of the TSPO-PET signal (R = 0.952, p < 0.0001). Conclusion: TSPO-PET represents a sensitive biomarker for monitoring of immunomodulation and closely reflects activated microglia. Sex and pre-therapeutic assessment of baseline microglial activation predict individual immunomodulation effects and may serve for responder stratification.


Assuntos
Doença de Alzheimer/metabolismo , Microglia/metabolismo , Receptores de GABA/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Imunidade Inata/imunologia , Imunomodulação/imunologia , Imunomodulação/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Pioglitazona/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/fisiologia , Fatores Sexuais
10.
J Neuroinflammation ; 17(1): 208, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660586

RESUMO

BACKGROUND: P301S tau transgenic mice show age-dependent accumulation of neurofibrillary tangles in the brainstem, hippocampus, and neocortex, leading to neuronal loss and cognitive deterioration. However, there is hitherto only sparse documentation of the role of neuroinflammation in tau mouse models. Thus, we analyzed longitudinal microglial activation by small animal 18 kDa translocator protein positron-emission-tomography (TSPO µPET) imaging in vivo, in conjunction with terminal assessment of tau pathology, spatial learning, and cerebral glucose metabolism. METHODS: Transgenic P301S (n = 33) and wild-type (n = 18) female mice were imaged by 18F-GE-180 TSPO µPET at the ages of 1.9, 3.9, and 6.4 months. We conducted behavioral testing in the Morris water maze, 18F-fluordesoxyglucose (18F-FDG) µPET, and AT8 tau immunohistochemistry at 6.3-6.7 months. Terminal microglial immunohistochemistry served for validation of TSPO µPET results in vivo, applying target regions in the brainstem, cortex, cerebellum, and hippocampus. We compared the results with our historical data in amyloid-ß mouse models. RESULTS: TSPO expression in all target regions of P301S mice increased exponentially from 1.9 to 6.4 months, leading to significant differences in the contrasts with wild-type mice at 6.4 months (+ 11-23%, all p < 0.001), but the apparent microgliosis proceeded more slowly than in our experience in amyloid-ß mouse models. Spatial learning and glucose metabolism of AT8-positive P301S mice were significantly impaired at 6.3-6.5 months compared to the wild-type group. Longitudinal increases in TSPO expression predicted greater tau accumulation and lesser spatial learning performance at 6.3-6.7 months. CONCLUSIONS: Monitoring of TSPO expression as a surrogate of microglial activation in P301S tau transgenic mice by µPET indicates a delayed time course when compared to amyloid-ß mouse models. Detrimental associations of microglial activation with outcome parameters are opposite to earlier data in amyloid-ß mouse models. The contribution of microglial response to pathology accompanying amyloid-ß and tau over-expression merits further investigation.


Assuntos
Encéfalo/metabolismo , Receptores de GABA/biossíntese , Aprendizagem Espacial/fisiologia , Proteínas tau/metabolismo , Animais , Encéfalo/patologia , Feminino , Previsões , Expressão Gênica , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Receptores de GABA/genética , Proteínas tau/genética
11.
J Nucl Med ; 61(12): 1825-1831, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32414948

RESUMO

Asymmetries of amyloid-ß (Aß) burden are well known in Alzheimer disease (AD) but did not receive attention in Aß mouse models of Alzheimer disease. Therefore, we investigated Aß asymmetries in Aß mouse models examined by Aß small-animal PET and tested if such asymmetries have an association with microglial activation. Methods: We analyzed 523 cross-sectional Aß PET scans of 5 different Aß mouse models (APP/PS1, PS2APP, APP-SL70, AppNL-G-F , and APPswe) together with 136 18-kDa translocator protein (TSPO) PET scans for microglial activation. The asymmetry index (AI) was calculated between tracer uptake in both hemispheres. AIs of Aß PET were analyzed in correlation with TSPO PET AIs. Extrapolated required sample sizes were compared between analyses of single and combined hemispheres. Results: Relevant asymmetries of Aß deposition were identified in at least 30% of all investigated mice. There was a significant correlation between AIs of Aß PET and TSPO PET in 4 investigated Aß mouse models (APP/PS1: R = 0.593, P = 0.001; PS2APP: R = 0.485, P = 0.019; APP-SL70: R = 0.410, P = 0.037; AppNL-G-F : R = 0.385, P = 0.002). Asymmetry was associated with higher variance of tracer uptake in single hemispheres, leading to higher required sample sizes. Conclusion: Asymmetry of fibrillar plaque neuropathology occurs frequently in Aß mouse models and acts as a potential confounder in experimental designs. Concomitant asymmetry of microglial activation indicates a neuroinflammatory component to hemispheric predominance of fibrillary amyloidosis.


Assuntos
Peptídeos beta-Amiloides/química , Placa Amiloide/metabolismo , Agregados Proteicos , Animais , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Placa Amiloide/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
12.
Alzheimers Res Ther ; 11(1): 67, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370885

RESUMO

BACKGROUND: Augmenting the brain clearance of toxic oligomers with small molecule modulators constitutes a promising therapeutic concept against tau deposition. However, there has been no test of this concept in animal models of Alzheimer's disease (AD) with initiation at a late disease stage. Thus, we aimed to investigate the effects of interventional late-stage Anle138b treatment, which previously indicated great potential to inhibit oligomer accumulation by binding of pathological aggregates, on the metabolic decline in transgenic mice with established tauopathy in a longitudinal 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) study. METHODS: Twelve transgenic mice expressing all six human tau isoforms (hTau) and ten controls were imaged by FDG-PET at baseline (14.5 months), followed by randomization into Anle138b treatment and vehicle groups for 3 months. FDG-PET was repeated after treatment for 3 months, and brains were analyzed by tau immunohistochemistry. Longitudinal changes of glucose metabolism were compared between study groups, and the end point tau load was correlated with individual FDG-PET findings. RESULTS: Tau pathology was significantly ameliorated by late-stage Anle138b treatment when compared to vehicle (frontal cortex - 53%, p < 0.001; hippocampus - 59%, p < 0.005). FDG-PET revealed a reversal of metabolic decline during Anle138b treatment, whereas the vehicle group showed ongoing deterioration. End point glucose metabolism in the brain of hTau mice had a strong correlation with tau deposition measured by immunohistochemistry (R = 0.92, p < 0.001). CONCLUSION: Late-stage oligomer modulation effectively ameliorated tau pathology in hTau mice and rescued metabolic function. Molecular imaging by FDG-PET can serve for monitoring effects of Anle138b treatment.


Assuntos
Doença de Alzheimer , Benzodioxóis , Emaranhados Neurofibrilares , Pirazóis , Proteínas tau , Animais , Feminino , Humanos , Camundongos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Benzodioxóis/administração & dosagem , Benzodioxóis/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Camundongos Transgênicos , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/metabolismo , Tomografia por Emissão de Pósitrons , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Proteínas tau/metabolismo
13.
J Nucl Med ; 60(12): 1787-1793, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31302633

RESUMO

Nonphysiologic overexpression of amyloid-ß (Aß) precursor protein in common transgenic Aß mouse models of Alzheimer disease likely hampers their translational potential. The novel AppNL-G-F mouse incorporates a mutated knock-in, potentially presenting an improved model of Alzheimer disease for Aß-targeting treatment trials. We aimed to establish serial small-animal PET of amyloidosis and neuroinflammation in AppNL-G-F mice as a tool for therapy monitoring. Methods:AppNL-G-F mice (20 homozygous and 21 heterogeneous) and 12 age-matched wild-type mice were investigated longitudinally from 2.5 to 10 mo of age with 18F-florbetaben Aß PET and 18F-GE-180 18-kDa translocator protein (TSPO) PET. Voxelwise analysis of SUV ratio images was performed using statistical parametric mapping. All mice underwent a Morris water maze test of spatial learning after their final scan. Quantification of fibrillar Aß and activated microglia by immunohistochemistry and biochemistry served for validation of the PET results. Results: The periaqueductal gray emerged as a suitable pseudo reference tissue for both tracers. Homozygous AppNL-G-F mice had a rising SUV ratio in cortex and hippocampus for Aß (+9.1%, +3.8%) and TSPO (+19.8%, +14.2%) PET from 2.5 to 10 mo of age (all P < 0.05), whereas heterozygous AppNL-G-F mice did not show significant changes with age. Significant voxelwise clusters of Aß deposition and microglial activation in homozygous mice appeared at 5 mo of age. Immunohistochemical and biochemical findings correlated strongly with the PET data. Water maze escape latency was significantly elevated in homozygous AppNL-G-F mice compared with wild-type at 10 mo of age and was associated with high TSPO binding. Conclusion: Longitudinal PET in AppNL-G-F knock-in mice enables monitoring of amyloidogenesis and neuroinflammation in homozygous mice but is insensitive to minor changes in heterozygous animals. The combination of PET with behavioral tasks in AppNL-G-F treatment trials is poised to provide important insights in preclinical drug development.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloidose/diagnóstico por imagem , Amiloidose/patologia , Microglia/patologia , Tomografia por Emissão de Pósitrons , Animais , Modelos Animais de Doenças , Feminino , Estudos Longitudinais , Masculino , Camundongos
14.
EMBO Mol Med ; 11(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31122931

RESUMO

Microglia adopt numerous fates with homeostatic microglia (HM) and a microglial neurodegenerative phenotype (MGnD) representing two opposite ends. A number of variants in genes selectively expressed in microglia are associated with an increased risk for neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). Among these genes are progranulin (GRN) and the triggering receptor expressed on myeloid cells 2 (TREM2). Both cause neurodegeneration by mechanisms involving loss of function. We have now isolated microglia from Grn-/- mice and compared their transcriptomes to those of Trem2-/-mice Surprisingly, while loss of Trem2 enhances the expression of genes associated with a homeostatic state, microglia derived from Grn-/- mice showed a reciprocal activation of the MGnD molecular signature and suppression of gene characteristic for HM The opposite mRNA expression profiles are associated with divergent functional phenotypes. Although loss of TREM2 and progranulin resulted in opposite activation states and functional phenotypes of microglia, FDG (fluoro-2-deoxy-d-glucose)-µPET of brain revealed reduced glucose metabolism in both conditions, suggesting that opposite microglial phenotypes result in similar wide spread brain dysfunction.


Assuntos
Cerebelo , Glucose/metabolismo , Glicoproteínas de Membrana/deficiência , Microglia/metabolismo , Tomografia por Emissão de Pósitrons , Progranulinas/deficiência , Receptores Imunológicos/deficiência , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Cerebelo/diagnóstico por imagem , Cerebelo/metabolismo , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Camundongos , Camundongos Knockout
15.
Cells ; 8(2)2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696113

RESUMO

Positron emission tomography (PET) ligands targeting the translocator protein (TSPO) represent promising tools to visualize neuroinflammation in multiple sclerosis (MS). Although it is known that TSPO is expressed in the outer mitochondria membrane, its cellular localization in the central nervous system under physiological and pathological conditions is not entirely clear. The purpose of this study was to assess the feasibility of utilizing PET imaging with the TSPO tracer, [18F]-GE180, to detect histopathological changes during experimental demyelination, and to determine which cell types express TSPO. C57BL/6 mice were fed with cuprizone for up to 5 weeks to induce demyelination. Groups of mice were investigated by [18F]-GE180 PET imaging at week 5. Recruitment of peripheral immune cells was triggered by combining cuprizone intoxication with MOG35⁻55 immunization (i.e., Cup/EAE). Immunofluorescence double-labelling and transgene mice were used to determine which cell types express TSPO. [18F]-GE180-PET reliably detected the cuprizone-induced pathology in various white and grey matter regions, including the corpus callosum, cortex, hippocampus, thalamus and caudoputamen. Cuprizone-induced demyelination was paralleled by an increase in TSPO expression, glia activation and axonal injury. Most of the microglia and around one-third of the astrocytes expressed TSPO. TSPO expression induction was more severe in the white matter corpus callosum compared to the grey matter cortex. Although mitochondria accumulate at sites of focal axonal injury, these mitochondria do not express TSPO. In Cup/EAE mice, both microglia and recruited monocytes contribute to the TSPO expressing cell populations. These findings support the notion that TSPO is a valuable marker for the in vivo visualization and quantification of neuropathological changes in the MS brain. The pathological substrate of an increase in TSPO-ligand binding might be diverse including microglia activation, peripheral monocyte recruitment, or astrocytosis, but not axonal injury.


Assuntos
Carbazóis/metabolismo , Esclerose Múltipla/diagnóstico por imagem , Receptores de GABA/metabolismo , Animais , Astrócitos/patologia , Astrócitos/ultraestrutura , Axônios/metabolismo , Axônios/ultraestrutura , Biomarcadores/metabolismo , Cuprizona , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Encefalomielite Autoimune Experimental/patologia , Feminino , Inflamação/patologia , Ligantes , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Monócitos/metabolismo , Neuroglia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de GABA/genética
16.
Nat Neurosci ; 22(2): 191-204, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30617257

RESUMO

Coding variants in the triggering receptor expressed on myeloid cells 2 (TREM2) are associated with late-onset Alzheimer's disease (AD). We demonstrate that amyloid plaque seeding is increased in the absence of functional Trem2. Increased seeding is accompanied by decreased microglial clustering around newly seeded plaques and reduced plaque-associated apolipoprotein E (ApoE). Reduced ApoE deposition in plaques is also observed in brains of AD patients carrying TREM2 coding variants. Proteomic analyses and microglia depletion experiments revealed microglia as one origin of plaque-associated ApoE. Longitudinal amyloid small animal positron emission tomography demonstrates accelerated amyloidogenesis in Trem2 loss-of-function mutants at early stages, which progressed at a lower rate with aging. These findings suggest that in the absence of functional Trem2, early amyloidogenesis is accelerated due to reduced phagocytic clearance of amyloid seeds despite reduced plaque-associated ApoE.


Assuntos
Doença de Alzheimer/genética , Amiloide/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/patologia , Glicoproteínas de Membrana/genética , Placa Amiloide/genética , Receptores Imunológicos/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Genótipo , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Fagocitose/fisiologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Receptores Imunológicos/metabolismo
17.
J Nucl Med ; 60(4): 548-554, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30262517

RESUMO

Neuroinflammation may have beneficial or detrimental net effects on the cognitive outcome of Alzheimer disease (AD) patients. PET imaging with 18-kDa translocator protein (TSPO) enables longitudinal monitoring of microglial activation in vivo. Methods: We compiled serial PET measures of TSPO and amyloid with terminal cognitive assessment (water maze) in an AD transgenic mouse model (PS2APP) from 8 to 13 mo of age, followed by immunohistochemical analyses of microglia, amyloid, and synaptic density. Results: Better cognitive outcome and higher synaptic density in PS2APP mice was predicted by higher TSPO expression at 8 mo. The progression of TSPO activation to 13 mo also showed a moderate association with spared cognition, but amyloidosis did not correlate with the cognitive outcome, regardless of the time point. Conclusion: This first PET investigation with longitudinal TSPO and amyloid PET together with terminal cognitive testing in an AD mouse model indicates that continuing microglial response seems to impart preserved cognitive performance.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Cognição , Microglia/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Proteínas Amiloidogênicas/metabolismo , Animais , Feminino , Estudos Longitudinais , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons , Prognóstico , Receptores de GABA/metabolismo
18.
J Neuroinflammation ; 15(1): 307, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400912

RESUMO

BACKGROUND: Causal associations between microglia activation and ß-amyloid (Aß) accumulation during the progression of Alzheimer's disease (AD) remain a matter of controversy. Therefore, we used longitudinal dual tracer in vivo small animal positron emission tomography (µPET) imaging to resolve the progression of the association between Aß deposition and microglial responses during aging of an Aß mouse model. METHODS: APP-SL70 mice (N = 17; baseline age 3.2-8.5 months) and age-matched C57Bl/6 controls (wildtype (wt)) were investigated longitudinally for 6 months using Aß (18F-florbetaben) and 18 kDa translocator protein (TSPO) µPET (18F-GE180). Changes in cortical binding were transformed to Z-scores relative to wt mice, and microglial activation relative to amyloidosis was defined as the Z-score difference (TSPO-Aß). Using 3D immunohistochemistry for activated microglia (Iba-1) and histology for fibrillary Aß (methoxy-X04), we measure microglial brain fraction relative to plaque size and the distance from plaque margins. RESULTS: Aß-PET binding increased exponentially as a function of age in APP-SL70 mice, whereas TSPO binding had an inverse U-shape growth function. Longitudinal Z-score differences declined with aging, suggesting that microglial response declined relative to increasing amyloidosis in aging APP-SL70 mice. Microglial brain volume fraction was inversely related to adjacent plaque size, while the proximity to Aß plaques increased with age. CONCLUSIONS: Microglial activity decreases relative to ongoing amyloidosis with aging in APP-SL70 mice. The plaque-associated microglial brain fraction saturated and correlated negatively with increasing plaque size with aging.


Assuntos
Envelhecimento , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidose/diagnóstico por imagem , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Carbazóis/farmacocinética , Modelos Animais de Doenças , Fluordesoxiglucose F18/farmacocinética , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Radioquímica , Receptores de GABA/metabolismo
19.
Front Aging Neurosci ; 10: 174, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930508

RESUMO

Positron-emission-tomography (PET) imaging of tau pathology has facilitated development of anti-tau therapies. While members of the arylquinoline and pyridoindole families have been the most frequently used tau radioligands so far, analyses of their comparative performance in vivo are scantly documented. Here, we conducted a head-to-head PET comparison of the arylquinoline 18FT807 and the pyridoindole 18FTHK5117 PET in a mouse model of tau pathology. PET recordings were obtained in groups of (N = 5-7) P301S and wild-type (WT) mice at 6 and 9 months of age. Volume-of-interest based analysis (standard-uptake-value ratio, SUVR) was used to calculate effect sizes (Cohen's d) for each tracer and age. Statistical parametric mapping (SPM) was used to assess regional similarity (dice coefficient) of tracer binding alterations for the two tracers. Immunohistochemistry staining of neurofibrillary tangles was performed for validation ex vivo. Significantly elevated 18F-T807 binding in the brainstem of P301S mice was already evident at 6 months (+14%, p < 0.01, d = 1.64), and increased further at 9 months (+23%, p < 0.001, d = 2.70). 18F-THK5117 indicated weaker increases and effect sizes at 6 months (+5%, p < 0.05, d = 1.07) and 9 months (+10%, p < 0.001, d = 1.49). Regional similarity of binding of the two tracers was high (71%) at 9 months. 18F-T807 was more sensitive than 18F-THK5117 to tau pathology in this model, although both tracers present certain obstacles, which need to be considered in the design of longitudinal preclinical tau imaging studies.

20.
Data Brief ; 19: 331-336, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29892655

RESUMO

Data in this article show radioligand uptake (to gamma counter and positron-emission-tomography) as well as polymerase chain reaction analyses of 18 kDa translocator protein (TSPO) quantification. We confirmed specificity of [18F]GE180 binding of rodent brain and myocardium by blocking experiments with prior application of non-radioactive GE180, using dynamic in vivo positron-emission-tomography and ex vivo gamma counter measurements. Expression of TSPO was compared between rodent brain and myocardium by quantitative polymerase chain reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...